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Order of operators matters! 

Quantum optics: 
photodetector measures ‚normal ordered‘ expectations (one click) 
homodyning and heterodyning are highly specific

Textbook (LL Vol. V):
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Quantum measurement and correla2ons?

?



Von Neumann measurement: from strong to weak
Idea: couple system ( !") to a 
pointer wavefunction # $

xP(x)

Ûint = e
igp̂Â

ψ i =α
1
A1 +α 2 A2

ψ i ⊗ P(x)

Strong measurement (large g): projective 
measurement on well separated pointer positions 
implies projection of system state

ψ f = A1 ψ f = A2or

Weak measurement (small g): projective measurement of 
pointer state gives almost no information, but correct average. 
The system state in one measurement is almost unchanged!

After reading the pointer

ψ f ≈α1 A1 +α 2 A2 +O(g2 )
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Price to pay for non-invasiveness: large uncertainty of the detection
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Quantum dynamics: time evolution of a quantum system

!ℏ ##$ Ψ($) = )* Ψ($) Ψ($) = +→($) Ψ(0)
Forward time-evolution

−!ℏ ##$ ⟨Ψ($)| = ⟨Ψ($)| )* ⟨Ψ($)| = ⟨Ψ(0)|+←($)
Backward +me-evolu+on

Physical expectations

2($) = ⟨Ψ($)| 32 Ψ $ = ⟨Ψ(0)|+← $ 32+→($) Ψ(0)
Backward and Forward

time-evolution

Quantum dynamics requires Forward and Backward time-evolution à Keldysh contour



The Keldysh contour: expanding the time dimension
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[Schwinger 1961
Keldysh 1964]
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Keldysh contour and measurements: projec4on
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Keldysh contour and measurments: weak and markovian (instantaneous)
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Keldysh contour and measurements: weak and con4nuous
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1) Full Counting Statistics:

Probability that a total charge Ne
is transferred in given time t0

(Quantum) definition ! = ∫ $% &(%)
Definition through Cumulant Generating function (CGF):

) ! = ∫ $*+,-.+/0(.)
+/0(.) = +, 1-. = +,.∫ 23 45(3)

Is this correct in the quantum case?

Levitov, Lesovik, JETPL (1993/94)

V = const

Current &

C1 - mean

C2 - width

C4 - sharpness

N

P

C3 - skewness

Cumulants
67 = !
68 = ⟨Δ!8⟩
6< = ⟨Δ!<⟩



Microscopic justification: time evolution of ideal current detector and
projective measurement [Levitov et al. 1997; Kindermann, Nazarov 2003]. 
(Projection can be problematic for superconductors, due to charge-phase 
uncertainty [Belzig, Nazarov, PRL 2001])

How to calculate the CGF quantum mechanically?
Quantum mechanical current detection has to account for 
non-commuting current operators!

Important difference
to classical definition
(see also Levitov, Lesovik 93)

Belzig, Nazarov, PRL 2001



“Probability” density functional for given current profile I(t): 

Inverse transformation

Generalization of FCS to 
Time-Dependent Counting:

classical average

[c.f. stochastic path integral Sukhorukov, Jordan, et al. 2003] 



Can we interpret this as probability density generating functional? 

No! Analogous to Wigner function we can have negative probabilities

[see also e.g. Nazarov and Kindermann, PRL 2004]

Generalization of standard Keldysh functional to time dependent counting 

Quantum definition of CGF for time-independent FCS

Problem: current operators at different times do not commute
The current cannot be measured at all times, but only up to some uncertainty

Keldysh ordered!



Orthogonal measurements

Probability to find A

State after measurement

Neumarks Theorem: Every POVM corresponds to a projective
measurement in some extended Hilbert space

Handling non-projective (weak) measurements:
Non-projective measurements:
Kraus operators

Positive
Operator
Valued
Measure

See e.g. Milburn & Wiseman, Quantum Measurement and Control (Cambridge, 2009) 



Noise of the detector

+ uncertainty

Kraus operator (instead of projection operator) for Markovian measurement

Causality

Positive operator valued probability measure (=projection in extended space)

Neumarks theorem

Proposed solution: weak Markovian measurement a la POVM

A. Bednorz and W. Belzig, Phys. Rev. Lett. 101, 206803 (2008)

Positive definite probability distribution:



Final result for current generating functional

Current generating functional with additional backaction and noise due to detector

Generalized Keldysh functional

Limiting cases:

full projection Strong backaction

large detector noise Weak measurement

Gaussian noise of the detector

Backaction of the detector (partial projection)

! " = ∫%& '()∫ *+, + -(+)Φ & with Φ & = '1 ,,3 4∫ *+,5(+)/78 9 → 0: Large Gaussian
noise substracted!



Generalized Wigner functional

Φ " = $% &,( )%*+, = -. $/∫ 12& 2 34(2) . $/∫ 12& 2 34(2)

WB and Y. V. Nazarov, Phys. Rev. Le7. 87, 197006 (2001)
Phys. Rev. Le7. 87, 067006 (2001)

A. Bednorz and WB, PRL (2008,2010)

The generating function of a markovian quantum measurement is Keldysh-ordered:

The generaOng funcOon of a non-markovian quantum measurement is ... 
... (even) more complicated

The answer to the quesOon of operator order:      7~9:Φ " /9" < 9" =

>, ? depend on the detector, but arbitrary ordering possible (à engineering)

Markovian: @ < @(=) → BC = , BC < /2

Higher order Markovian: @EF → G
H

BC, 3I, B7

Non-Markovian: @ < @(=) → > ⊗ BC(<), BC(=) + ? ⊗ [ BC(<), BC(=)]

Quasiprobability density generating functional! 
Analogously to Wigner function we can have negative probabilities



Quasiprobability? 
1-Photon-Fock state
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Example: 

Wigner-function !(#, %)
= “Probability” for x and p

Negative!

Cannot be measured directly, but through a noisy and weak measurement

Signatures of nega8vity (=non-classicality)? 

Viola2on of classical inequali8es, e.g. Bell, CHSH, LeggeQ-Garg, weak values....

2) Keldysh-ordered expectations are quasiprobabilities

Bednorz and WB, Phys. Rev. LeQ. 2008



Weak posi*vity of the Wigner-Keldysh quasiprobability

Weak markovian measurement scheme:

Cij = AiAj = 1
2

Âi , Âj{ } =  positive definite correlation matrix

[Bednorz & Belzig, PRB 2011]

C can be simulated by classical probability distribution, e.g. 

p(A1,A2,…) ~ e
− AiCij

−1Aj
ij
∑ /2

≥ 0

With symmetrized second order correlaHon funcHons a 
violaHon of classical inequaliHes is  impossible à the 
corresponding quasiprobability is weakly posi0ve

A2 −1( )2 = 0Note: does not assume dichotomy, corresponding e.g. to



Possible inequality à Cauchy-Bunyakowski-Schwarz (CBS) inequality

!" #" ≥ !# "

à Fullfilled for all posi<ve probabili/es %(!, #)



Test of CBS with Wigner functional for current fluctuations

Current operator in frequency space: !"# = ∫&'()#* !"(')

We choose: -. = ∫#/01//3
#/41//3 &56 !"#6 !"0# and -7 = ⋯ .

à measurement bandwidth Δ;/< centered at 5=/>

Bednorz and WB, 
Phys. Rev. Le@. 105, (2010)

Phys. Rev. B 81, 125112 (2010)

Violation of CBS would be a proof of negativity of Wigner functional!

Typical experimental setup

Forgues, Lupien, Reulet, PRL (2014)
See also 

Zakka-Bajjani et al. PRL (2010) 

? .3 73 ≥ .7 3 ?

2nd and 4th-order correlators from tunnel Hamiltonian

AB =C
DE

'DEFDG4 FEH + ℎ. F.

.7 = Δ=ΔK 6 !"#/6 !"0#/6 !"#L6 !"0#L

.3 = Δ=3 6 !"#/6 !"0#/
3
+ Δ= 6 !"#/6 !"0#/

3



Violation of CBS for a tunnel junction
Maximally extended non-overlapping frequency intervals !" ≈ 2Δ& + Δ", !& ≈ Δ&

[Bednorz, WB, PRB 2010, PRL 2010]

ViolaEon: Quantum many-body entanglement of electrons in different dynamical modes 

!"/!&

*+ = -./ = 0

*+ = 2ℏ!&
-./ = 0

*+ = 0
-./ = ℏ!&

Negative Wigner functional

23 4

24 34

5 = 5-Ω

1

E.g. nonequilibrium many-body wave funcEon, Vanevic, Gabelli, Belzig, Reulet, PRB 2016  



3) Time-reversal symmetry breaking

Measurement Classical Quantum

strong
(invasive)

weak
(non invasive)

Does the observation of a system in thermal 
equilibrium show time-reversal symmetry (T)?

T is broken
(order of disturbances 

influences the dynamics)

T is broken
(order of projections 
influences the state)

T is observed
(measurement is completely 

independent of the dynamics)
?

Bednorz, Franke, WB, New J. Phys. (2013)



Quantum prediction for 
three measurements? !, #, $

Opposite order:

! → # → $

$ → # → !
≠

$, #, !
Three point correlator  for '(, ' > 0 (e.g. thermal equilibrium)

!, !('), !(' + '() ≠ !, !('′), !(' + '()
time-reversal (and shift by ' + '′)

Classical expectation is not matched:
A quantum system observed weakly in equilibrium

seemingly breaks time-reversal symmetry

Time-resolved weak measurements

Bednorz, Franke, WB, New J. Phys. (2013)



Curic, Richardson, Thekkadath, Flórez,
Giner, Lundeen, Phys. Rev. A (2018)

Experimental confirmation that time-ordering matters in third order weak measurements

!, #, $ ≠ #, !, $!, # = #, ! + third 
measurement



time

a(t)

b(s)

ψ

Two measurements (first A, then B)
Derived using time-non-local Kraus operators 

The measured observable depends on the history!
ψ

time

a(t)
a(t) = dt 'g(t − t ') Â(t ')

−∞

t

∫

A single measurement (of A):

Bednorz, Bruder, Reulet, WB, PRL 2013

Result:    Introducing memory function allows measurement of the commutator
à non-Markovian scheme

Standard Markovian

memory 
functions

!(#)%(&) = ( ⊗ *+, -. #, &
+0 ⊗ [ *+, -.] #, &

4) General non-markovian weak measurement

⊗=time convolution



• One system, two detectors weakly coupled: !" = !"$%$ + !"' + !"( + !")*+
• Initial product state of the density matrices

• Unitary time evolution, interrupted by readout of the detectors (Kraus operators 

à taken as weak measurements)

• Expansion of the time evolution to 2nd order in the coupling constant

• Final density matrix provides probability for the correlation function

Microscopic picture of non-Markovian weak measurments

Non-Markovian: ,(.)0(1) → 3 ⊗ 56, 89 ., 1 + : ⊗ [ 56, 89] ., 1

J. Bülte, A. Bednorz, C. Bruder, and WB, Phys. Rev. Lett. 120, 140407 (2018).

Result: Separation into three processes = = ,(.)0(1) = =$%> + ='?@+ + =(?@+



Interaction Hamiltonian

Da

Db

Ma

Mb

! = #(%)'(() = 1
*+*,

{ ./+ % , ./, ( }

.2345 = *+.6+ 78 + *,.6, :;

The meter variables are ./+( ./,):

Interaction:



Da

Ma

Db
Mb

• Symmetrized noise

• Response function

Decomposition into elementary processes

All contribu9ons are expressed by (! = #, %, &'&)



The markovian (symmetrized) contribution

Da

Ma

Db
Mb

“! ⊗ #$, &' (, ) “

à Corresponds to classical frequency filter!



Da

Ma

Db
Mb

The non-markovian (non-symmetrized) contribution

! " #(%) ~ ( ⊗ [ +,, ./] ", %

System-mediated detector-detector interac9on:
The noise of detector a measured by the response
of the system seen by detector b.



The non-markovian (non-symmetrized) contribution (part II)

Da

Ma

Db
Mb

System-mediateddetector-detectorinteraction:
The noiseof detectorb measuredbytheresponseof 
of thesystemseenbydetectora

The other way round......

! " #(%) ~ ( ⊗ [ +,, ./] ", %



Result of microscopic treatment

! = #(%)'(() = !)*+ + !-./0 + !1./0
= 2-21 ⊗ 4)*) + 2-2)*) ⊗ 41 + 212)*) ⊗ 4-

Frequency-filtered 
markovian response

System-mediated 
detector-detector interaction 

#(%)'(()

56 ( , 89 % /2 < [ 56 ( , 89 % ] /2?) 56 ( , 89 % + <?- [ 56 ( , 89 % ]

Detector engineering

Corresponds to a family of quasiprobabilities (Wigner, Q, P,….)

Symmetrized noise

Response funcGon

Expressed by noises and responses of the system and the detectors:

J. Bülte, A. Bednorz, C. Bruder, and WB, Phys. Rev. Lett. 120, 140407 (2018).

2)*) = < 89 ( , 56 % @ or  2- = < ABC, ADC C

4)*) = 89 ( , 56 % @/2 or SF = ABC, ADC C/2



Proposed implementation: 
Two double-dot detectors measuring a single quantum system

n+

n-

• Double dot characterized by occupa2on 
difference of the energy eigen levels 

• Tuning Δ"# from posi2ve to nega2ve 
switches the detector from absorp2on to 
emission mode 

Sy
st

em

tbta

n1,a

n2,a n2,b

n1,b

Ia Ib

Occupation recorded by a bypassing current

c.f. double dot detectors Aguado, Kouwenhoven



Measurement of a bosonic system: ! = #
$ (& + ())

Δna

Δnb

By tuning Δna and Δnb different system 
operator orders are obtained
• Wigner
• normal
• antinormal
• Kubo

J. Bülte, A. Bednorz, C. Bruder, and W. Belzig, 
Phys. Rev. LeB. 120, 140407 (2018).



The Quantum Transport Group with guests
qt.uni.kn
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Summary of Noisy Quantum Measurements: a nuisance or fundamental physics?

• Quantum measurement: projection vs. weak measurements
- (Noisy) non-invasive measurements offer another (new) 

perspective on the quantum measurement problem
• Quantum dynamics: Keldysh contour
• Generalized Keldysh-ordered functional
• Keldysh-ordered expectations are quasiprobabilities

- Weakly measured non-commuting variables violate 
classicality (in the forth order)

• Keldysh-ordered third cumulant
- Time-reversal symmetry
- Violation of  conservation laws

• General non-markovian weak measurement
- System mediated detector-detector interaction
- Detector engineering allows tailored operator order
- Unusual third-order correlators

Follow us on twitter: @QtUkon qt.uni.kn



THE END




