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Quantum measurement and correlations?  Order of operators matters!

([B(s),A®])/2
(B(s)A(t))
(A(t)B(s))

(B@.Aw)2

The operators x(z) and x(¢') relating to different instants do not in general
commute, and the correlation function must now be defined as

o(t'—1) = 3[x()x(t")+x(")x(2)], (121.9)

?
(a(t)b(s)) = 1

Textbook (LL Vol. V):

Quantum optics:
photodetector measures ,normal ordered’ expectations (one click)
homodyning and heterodyning are highly specific



Von Neumann measurement: from strong to weak

Idea: couple system (4) to a ‘W> & /P(x)
l
pointer wavefunction / P (x)

v =0 |A)+a,|A,)

igpA
Uint =e* > a1 |AVP(x + gAy) + ay| A\ P(x + gA,)

Strong measurement (large g): projective
measurement on well separated pointer positions
implies projection of system state

v, )=[4) or |y,)=]A,)

Weak measurement (small g): projective measurement of
pointer state gives almost no information, but correct average.
The system state in one measurement is almost unchanged!

P(x)

After reading the pointer
‘I//f> ~a,|A)+a,|A)+0(8?)

Price to pay for non-invasiveness: large uncertainty of the detection



Quantum dynamics: time evolution of a quantum system

ih%ll}’(t)) = H|¥(1)) (W (t)) = U_(£)|¥(0))
Forward time-evolution

—ih%(tp(tn = (Y(t)|H (PO =(¥(O)|U_(1)
Backward time-evolution

Physical expectations

(A(t)) = (POIAIP (D)) = (P (0)|U_ (AU, (t)|¥(0))
Backward and Forward
time-evolution

Quantum dynamics requires Forward and Backward time-evolution = Keldysh contour



The Keldysh contour: expanding the time dimension

forward time

&
initial state \‘ tige

measurement

(A(t))

—]

backward time

Imaginary time

\

Thermal state [Schwinger 1961
—in/kgT Keldysh 1964]



Keldysh contour and measurements: projection

forward time

p,

e—> -
initial state ti
& ~ —
backward time strong strong
measurement measurement

Imaginary time
—ih/kyT \ /

(A(t)) (B(s))a

Thermal state



Keldysh contour and measurments: weak and markovian (instantaneous)

forward time
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. | | .
initial state Gt S t@e
) 4 T J
' :
& - o—
: weak weak
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Keldysh contour and measurements

forward time

: weak and continuous

tige

italsige A
. [ oo /
& .
, weak weak
backward time
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Imaginary time with memory with memory

—ih/kgT

\

Thermal state
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({A(©), B(s)}) or i{[A(t), B(s)] ) ?



1) Full Counting Statistics:

Pto (N) C, - sharpness

Q175 |
Probability that a total charge Ne Q15| Cumulants
is transferred in given time t, Q125 | €y = (N)
- C; = (AN?)
Current [ P : C3 = (AN?)

Qo |
Qs |

) IR ‘At e N

V = const

(Quantum) definition N = [ dt I(t)

Definition through Cumulant Generating function (CGF):
P(N) = [ dyeNxe—S&)
=S — (eiﬁx) — (eixf dt f(t))

Is this correct in the quantum case?

Levitov, Lesovik, JETPL (1993/94)




How to calculate the CGF quantum mechanically? = =
Quantum mechanical current detection has to account for I[I(t), I(t')] + 0‘
non-commuting current operators!

oS0 — Ty [ﬁzj-d% Jo° I(®)dtgi% [5° f(t)dt]

Belzig, Nazarov, PRL 2001

Microscopic justification: time evolution of ideal current detector and
projective measurement [Levitov et al. 1997; Kindermann, Nazarov 2003].
(Projection can be problematic for superconductors, due to charge-phase
uncertainty [Belzig, Nazarov, PRL 2001])

Important difference
to classical definition
(see also Levitov, Lesovik 93)

oSt (x) — <€ix I f(t)dt>



Generalization of FCS to
Time-Dependent Counting:

“Probability” density functional for given current profile I(t):

olT] = / Dy Si—i [ dtx(®1®)

Inverse transformation

S — / DI o[I]et S 4x®I®

<eg fdtx(t)l(t)>

]

classical average

%

[c.f. stochastic path integral Sukhorukov, Jordan, et al. 2003]



Quantum definition of CGF for time-independent FCS

SO0 — Ty [ﬁ’j'ei% Jo° I(®)dt g i% [ f(t)dt}

Generalization of standard Keldysh functional to time dependent counting

Sl — Ty [ﬁe% S atx®) 1) o5 [ dtx(t)f(t)]

[see also e.g. Nazarov and Kindermann, PRL 2004]
Can we interpret this as probability density generating functional?

No! Analogous to Wigner function we can have negative probabilities

Problem: current operators at different times do not commute
The current cannot be measured at all times, but only up to some uncertainty




Handling non-projective (weak) measurements:

Orthogonal measurements Non-projective measurements:

{pA _ |A> <A|} ZISA —1 Kraus operators {KA} FA = K’LK’A
A

o ) Y KuKl =1 Positive

PaPp = PA(SA,B A A Operator
FiF Fad Valued

Probability to find A alp # Fa0a,p Measure

pa = TrpPa pa = TrpK | K

State after measurement

AP oA - S At
pa = PapPa/pa pa=KapK,/pa
Neumarks Theorem: Every POVM corresponds to a projective

measurement in some extended Hilbert space

See e.g. Milburn & Wiseman, Quantum Measurement and Control (Cambridge, 2009)



Proposed solution: weak Markovian measurement a la POVM

Kraus operator (instead of projection operator) for Markovian measurement

K[I] = / DT el dtie®UE®-1()- 2

Causality Noise of the detector
+ uncertainty

Positive operator valued probability measure (=projection in extended space)

™S

Neumarks theorem
Positive definite probability distribution:

pll] = Tr | pKHIK[1]

A. Bednorz and W. Belzig, Phys. Rev. Lett. 101, 206803 (2008)



Final result for current generating functional

Generalized Keldysh functional p(ph) = ¢+ x/2

oSl — Ty [ﬁeg J dt(x(8)/2+6) I (t) 7, L fdt(x(t)/2—¢(t))f(t)]

Current generating functional with additional backaction and noise due to detector

SSIX / DeShdle— [ 428> O+x*(1)/2)/7

\ Gaussian noise of the detector

Backaction of the detector (partial projection)

Limiting cases:

T — OO  full projection > Strong backaction

T —0 large detector noise —> Weak measurement

T — 0: Large Gaussian

_ —if dty(t)I(t) . — LSy 0l+f detx?(t)/2t
ol/] fl))(e Plx] with @[x] =-e noise substracted!



Generalized Wigner functional WB and Y. V. Nazarov, Phys. Rev. Lett. 87, 197006 (2001)
Phys. Rev. Lett. 87, 067006 (2001)
A. Bednorz and WB, PRL (2008,2010)

The generating function of a markovian quantum measurement is Keldysh-ordered:

CI)[X] — eS[X,O]—Sdet — (j"[elf th(t)A(t)]T[eif dt)((t)ﬁ(t)])

Quasiprobability density generating functional!
Analogously to Wigner function we can have negative probabilities

The generating function of a non-markovian quantum measurement is ...
... (even) more complicated

The answer to the question of operator order:  C~82®[x]/8x(t)8x(s)

. H 1 A D ~
Higher order Markovian: (abc) — Z<{A’ {B, C}}>

g, f depend on the detector, but arbitrary ordering possible (= engineering)




2) Keldysh-ordered expectations are quasiprobabilities

1-Photon-Fock state

Quasiprobability?

Example:
Wigner-function W (x, p)
= “Probability” for x and p

Negative!

Cannot be measured directly, but through a noisy and weak measurement

Signatures of negativity (=non-classicality)?
Violation of classical inequalities, e.g. Bell, CHSH, Leggett-Garg, weak values....

Bednorz and WB, Phys. Rev. Lett. 2008



Weak positivity of the Wigner-Keldysh quasiprobability

Weak markovian measurement scheme: [Bednorz & Belzig, PRB 2011]

C;=(A4;)= %<{Ap2\j}> = positive definite correlation matrix

C can be simulated by classical probability distribution, e.g.

=) AC;'A;2
i

P(ALA,,..)~e >0

With symmetrized second order correlation functions a
violation of classical inequalities is impossible = the
corresponding quasiprobability is weakly positive

2
Note: does not assume dichotomy, corresponding e.g. to <(A2 —1) >=0



Possible inequality = Cauchy-Bunyakowski-Schwarz (CBS) inequality

(X2NY?) = (XY)*?

= Fullfilled for all positive probabilities P(X,Y)



Test of CBS with Wigner functional for current fluctuations

Current operator in frequency space: [, = fdtei“)t It Typical experimental setup

R R R R Digitizer
We choose: X = wa+AX/2 dwél,61_, and Y = ---. P P

a)X—AX/Z
- measurement bandwidth AX/Y centered at Wy y - - A
I AR

. . . 300 K
(XY) — AXAy<6I(UX6I—wX5IwY61_wY> 20 dB 3K 2 ;
A ~ o 26 dB 20 mK ——==
t>8 GHz

(X?) = A2 <(5iwx51_wx)2> + Ay(61, 60, )°

4 -8 GHz+— —
triplexer Cu) CUD
S4CH: i 50 Q2 50 Q
Tunqd
nd th ki Junctiont
2"% and 4t™-order correlators from tunnel Hamiltonian =
Forgues, Lupien, Reulet, PRL (2014)
Hy = Z tkqCI-CI_LCqR +h.c. See also

kq Zakka-Bajjani et al. PRL (2010)

Violation of CBS would be a proof of negativity of Wigner functional!

? <X2><Y2> > (XY)Z ? Bednorz and WB,

Phys. Rev. Lett. 105, (2010)
Phys. Rev. B 81, 125112 (2010)



Violation of CBS for a tunnel junction

Maximally extended non-overlapping frequency intervals wy = 2Ay + Ay, wy = Ay

g T o eV = kT = 0
| Negative Wigner functional /
(xyy> [
(X2y2) |
eV = 2hwy
. . kgT =0
1 Zclassical regime:
el/ =0
kBT - h(,()y

classical regime

10 20 30 40 50 60 70 80 90

wy /Wy [Bednorz, WB, PRB 2010, PRL 2010]

Violation: Quantum many-body entanglement of electrons in different dynamical modes

E.g. nonequilibrium many-body wave function, Vanevic, Gabelli, Belzig, Reulet, PRB 2016



3) Time-reversal symmetry breaking

Does the observation of a system in thermal
equilibrium show time-reversal symmetry (7)?

Measurement Classical Quantum

T'is broken T'is broken
s'trong' (order of disturbances (order of projections
(invasive) influences the dynamics) influences the state)
weak T is observed

(measurement is completely ?

(non invasive) independent of the dynamics)

Bednorz, Franke, WB, New J. Phys. (2013)



Time-resolved weak measurements

Quantum prediction for A>B—>C — ({A, {B, C}})

three measurements?

Three point correlator fort’,t > 0 (e.g. thermal equilibrium)

({4, {A®), A(t + tH}}) = ({4 {A), At + t)}})
\/

time-reversal (and shift by t + t')

Classical expectation is not matched:
A quantum system observed weakly in equilibrium
seemingly breaks time-reversal symmetry

Bednorz, Franke, WB, New J. Phys. (2013)



Experimental confirmation that time-ordering matters in third order weak measurements
( a ) Incoherentl n ( b)
0 y L

polarized states

Curic, Richardson, Thekkadath, Florez,

T 2 xtal 1
Giner, Lundeen, Phys. Rev. A (2018) [\ 16) A frm ﬂ ﬁrm
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4) General non-markovian weak measurement

The measured observable depends on the history! time

>

A single measurement (of A): ‘l//> ~

<a(t)>=jdt'g(t—t')@(t')} 4 T"

Two measurements (first A, then B)
Derived using time-non-local Kraus operators

(a(t)b(s)) = g ® ({B,4})(¢,s)
+f ® ([B, A])(¢, s)

&X=time convolution

Result: Introducing memory function allows measurement of the commutator

- non-Markovian scheme
Bednorz, Bruder, Reulet, WB, PRL 2013



Microscopic picture of non-Markovian weak measurments

* One system, two detectors weakly coupled: H = ﬁsys +H, + H, + H;,,;
* Initial product state of the density matrices

* Unitary time evolution, interrupted by readout of the detectors (Kraus operators
- taken as weak measurements)

* Expansion of the time evolution to 2" order in the coupling constant

* Final density matrix provides probability for the correlation function
Non-Markovian: (a(t)b(s)) > g & ({A,E})(t, s)+ f ® ([4, B])(t, s)
Result: Separation into three processes C = {(a(t)b(s)) = CY™ + cget + cget

J. Blilte, A. Bednorz, C. Bruder, and WB, Phys. Rev. Lett. 120, 140407 (2018).



Interaction Hamiltonian

Interaction:
D _ A .
la Hmt —_ ACLDCLA + ;l,bDbB
A o
The meter variables are M, (M,):
1 a b
o . C = {(a(t)b(s)) = — <{Ma(t); [V]b(s)})
O Db a’‘b
= M,



MEASURED SYSTEM

Decomposition into elementary processes

DETECTOR

DETECTOR

/X

O = Oy + Cv;iet 4+ Cglet

All contributions are expressed by (@ = a, b, sys)

Symmetrized noise
1 - .
Sky (1) = S{Xa (1), Ya(t)})

Response function

Xy (1) = =0t — ) ([Ka (1), Va ()

—
Ny




The markovian (symmetrized) contribution

MEASURED SYSTEM

DETECTOR

DETECTOR

<

A

CoH = /dtdt/ Xirp(tast) Xarp (e, ') Sip(tt)
U \ ’ 4
"9 ® ({4, B})(t,5)"

— Corresponds to classical frequency filter!



The non-markovian (non-symmetrized) contribution

” N
s N

Cdet / A4t S (tast) Xorp (s ) Xoa(F 1)

Da
||
2 |
II.I_.I ]
)
7 " A
p A~
2 - (a()b(s)) f ® ([4,B1)(t, )
>
()] ]
<< n
= Ij System-mediated detector-detector interaction:
g g~ b The noise of detector a measured by the response
e of the system seen by detector b.
E N M b



The non-markovian (non-symmetrized) contribution (part Il)

d det 0
s . Cy° /dtdt Xrp(tat) Sirp(ts,t) xap(t,t')
= . \
% /‘/ A U T
D A oA
2 " 2 (a(t)b(s)) f ® ([4,B1)(t,5)
2 .
§ - The other way round......
o Db e 10103319p AqQ uaas waisAs ayy Jo
E Jo asuodsaJ ay3 Aq painsesw g J032319p JO 3SIoU 3y
i M b :U0I310EeI3U] 10]03)3pP-1030313p pajlelpaw-walsAs
o




Result of microscopic treatment

Expressed by noises and responses of the system and the detectors:

Symmetrized noise [ §o,c = ({A(s),ﬁ(t)})o/Z or S, = ({My, EA})A/Z

C = (a(t)b(s)) = CY™ 4 Cdet 4 cglet
= XaXp @ Ssys + XaXsys @ Sp + XpXsys @ Sq

Hr J \ )
Y
Frequency-filtered System-mediated
markovian response detector-detector interaction
(a(t)b(s))

${{B (), AWD}) + i84([B(s), AD)] )

Corresponds to a family of quasiprobabilities (Wigner, Q, P.,....)

J. Blilte, A. Bednorz, C. Bruder, and WB, Phys. Rev. Lett. 120, 140407 (2018).



Proposed implementation:
Two double-dot detectors measuring a single guantum system

Occupation recorded by a bypassing current

——r o ——— o - - - — +
Ang =n_, —n,

1
1

Y %

I I

[ I

| , N
b - - == ' - 4  Double dot characterized by occupation
]f]a = €,0% + 1,6 0% =Ny o — Nog difference of the energy eigen levels

z X z ’ ’ .y e
* Tuning An, from positive to negative

Hi: = na&gA + nbﬁgB switches the detector from absorption to

emission mode

c.f. double dot detectors Aguado, Kouwenhoven



Measurement of a bosonic system: a = %(x + ip)

Any
t—@ \;&\r&
% Od’ C = Osym + Cc(zjet + Cl()iet
e}
O By tuning An, and An, different system
.t operator orders are obtained
C X <[a’7a’ ]> Ana ° Wigner
* normal
N  antinormal
)\
( > * Kubo
N\
S &
05 &
2

J. Bllte, A. Bednorz, C. Bruder, and W. Belzig,
Phys. Rev. Lett. 120, 140407 (2018).
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Summary of Noisy Quantum Measurements: a nuisance or fundamental physics?

* Quantum measurement: projection vs. weak measurements
— (Noisy) non-invasive measurements offer another (new)

perspective on the quantum measurement problem
e Quantum dynamics: Keldysh contour
* Generalized Keldysh-ordered functional

* General non-markovian weak measurement
— System mediated detector-detector interaction
— Detector engineering allows tailored operator order
— Unusual third-order correlators

Keldysh-ordered expectations are quasiprobabilities
— Weakly measured non-commuting variables violate
classicality (in the forth order)
Keldysh-ordered third cumulant
— Time-reversal symmetry
— Violation of conservation laws



THE END






