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e Chimeras have been known since 2002.

e Early papers considered a ring of identical phase oscillators with nonlocal
coupling, or a pair of all-to-all coupled subnetworks.

e Natural questions:

1. Do we need identical oscillators?

2. Do we need all-to-all coupling?

3. Do we need nonlocal coupling?

4. Do chimeras occur in networks of more general oscillators?

e | will show how some of these questions were answered.



Nonlocal coupling

e Consider a network of phase oscillators on a ring with nonlocal coupling:

N
do; 1 .
d—tz :“’_NZ G;jsin(0; — 0; + a)
7=0
where
Gij = e Bli—jl/N

and |t — 7| is shortest distance between oscillators ¢« and 5 on ring.
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For some initial conditions, and values of «, we get chimeras:

oscillator phase
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Even though oscillators are identical and coupled in highly-symmetric way,
they split into synchronous and asynchronous groups.

Movie. Phases are shown in a coordinate frame rotating with synchronous
oscillators.




e Thought to require nonlocal coupling.
e |s that true? Where does nonlocal coupling come from?

Consider general reaction-diffusion equation on 1D domain €2 with only
local interactions via diffusion in one variable:

Bu_ 1
a—f(u)‘l"v (1)
81}_ 82 v 5
55—9(’“)—’0"‘@ (2)

e small = separation of timescales: u is “slow”, v is “fast.”

Taking limit of infinitely fast dynamics for v, i.e. setting e = 0, gives



e If h(x) is the Green’s function associated with (1 — 83—;2) on (2

v(@) = [ hiz ~yg(u(y)) dy
and substituting this into (1) we obtain nonlocal equation for u:

ou

- =F(u)+ /Qh(“’ —y)g9(u(y)) dy

[For @ = R and limy,, _, o, h(z) = 0, h(z) = e~1®l/2]

e We will do the network analogue of this, but not set ¢ = 0.



Model:
do ;

4 =i~ Re(ze™%)
eﬁ — AeMO+0) _ 2 + Zj+1 — 2% + Zj—1

(Az)?
fory =1,2... N,where Ax = L/N; A, 3 and ¢ are all constants.

e State of oscillator j described by two variables: 6; € [0,2m) and
zj € C.

e w; randomly chosen from a Lorentzian distribution with half-width-at-half-
maximum o centred at wg, namely

o/
(w — wg)? + o2

g(w) =



Does show chimera at ¢ = 0.2
(a): sin 0;;

(b): sin (arg (z;));
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Relationship to previous models:

e Sete = 0. If z; is the jth entry of the vector z € CN and similarly for
0,
(I — D)z = Ae'0+P)
where I is N X NN identity matrix and D is matrix representation of clas-

sical second difference operator with periodic boundary conditions.

e Defining G = (I — D)~ ! we have

N
k=1
and thus

do; N
— =w; — A Z G ji cos (0; — 0, — )
k=1



where
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Analysis for € # 0 using self-consistency

e System is invariant under the simultaneous shift: 6; — 6; + « and

zj +> zje forall j.

e Move to a rotating coordinate frame: ¢; = 6, — Qt and y; = zje“¥,
where €2 is to be determined.

e Take the limit N — oc:

0o B _id
F _w—Re(ye )—Q (3)
oy (d+13 %y

E:a = Aez( ) — Y —I— @ — Zeﬂy (4)

e Search for solutions for which y is stationary, i.e. just a function of space.
Let such a solution be y(z) = R(x)e'©(®).



e To obtain a stationary solution of (@) replace e*® by its expected value,
calculated using density of ¢, inversely proportional to its velocity (9¢ /Ot).

e Need to solve

) o0 27 82
0= Aew/ /O e'’p(p|w)g(w)de dw — y + B—acg — 1eQy
— OO

where the density of ¢ given w is

V(w— Q)2 — R?
lw — Q2 — Rcos (O — ¢)|

p(Plw) = o

and g(w) is the Lorentzian.



e Evaluating the integrals we obtain

Aet(©+08)
R

w0—|—i0'—ﬂ—\/(w0—|—i0'—ﬂ)2—R2]

0?2 :
— <l—|—isﬂ—> Re'© =0

Ox2

e A nonlinear eigenproblem: unknowns R(x), ®(x) and eigenvalue €.



Once a solution is found, follow it as wqg and e are varied. Find they are
destroyed in saddle-node bifurcations:
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000

(o is width of frequency distribution, wq is centre.)



e Local coupling through diffusion (as here) more natural.
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e What is missing: stability.

e “Chimeras in networks with purely local coupling”. Carlo R. Laing.
Phys. Rev. E. (Vol. 92, 050904(R), 2015).



Planar oscillators
e Many systems studied use phase oscillators.

e Chimeras first observed in systems of planar (2D) oscillators, so they
certainly exist, but what about analysis?

e Here we consider two coupled subnetworks of planar oscillators with a
parameter, €, such that as e — 0 we recover previously studied system of
phase oscillators.



The model we consider is

dX;
J _ —1 . 2
= wX; + € {1—(1—|—5ez)|Xj| }Xj

W N , N

— > Xp+—=> XNtk
N = N =

foryp =1,... N and

dX
- iwxj+e—1{1—(1+5ei)|xj|2}xj

dt
N L, N
— X — X
NNt

forg =N+1,...2N,where X; € C,andw, ¢, a, pand v € R.

+ e—ia

e Pair of populations of N Stuart-Landau oscillators; all-to-all coupling
within each population of strength p; all-to-all coupling between the two
populations of strength v.



Defining X ; = rjewj, have

dr; ) N
J —1 2
R R 1 — ). 4+ 2 0. — 0. —
7 e ( rj)rJ—I—Nkz::lrkcos(k j— )
” N
+ NZ"“N—I—I:COS (ON+Ek — 05 — )
k=1
do ; 1 | N
J 2 .
— = w—0r;+— | — rsin (0 — 0; — o

N k=1

for first population. Similarly for second.

N
V L]
+ — E TNtk Sin (Onyp — 0 — a)}

As e — 0, r; — 1, and recover system of Abrams et al., 2008.



Snapshot of chimera
for N = 500.
Population 2 perfectly
sychronised.

S e . o
e U AT A T
...l‘.s K, LX]
PP L R

3 RXY
2% Lt
0 % o o e
. M o %,
o .
.

o
e

-~ 'y

o A e o S L o
SRR WL RIS, SR L Rt
SRR S S (ol A n

(@)

0 250

50

0

Index |

750 1000

wA

6.-6

N+1

30

20

Density

10




e To analyse, set X, = Y for all 3 in population 2.
J

e Since dynamics depend on phase differences, go to rotating coordinate
frame (speed €2) such that Y is constant.

e Rotate frame such that Y is real.

Then

0=i(w—N)Y +¢e ! {1 —(1+ dei)Yz} Y + e @ (,uY + 1/5(\)
where

X

s
= Xy,
N k=1

Given 5(\, can solve this for Y.



e Each oscillator in population 1 satisfies

% — [5Y2 + psina — (v/Y)Im {e_ia"?}} X

. {1—(1+5ez‘)|X|2}X+e—ia[u)?+uY] (5)

e Waveforms are equally staggered in time (splay state) so that as N —
oo, X and Y become constant.

e Can replace mean of population 1 by integral over one period, so self-
consistency equation defining chimera is

- 1 (T(X)

X =— X (t; X) dt
T(X)Jo

where X (t; 5(\) is a periodic solution of Eq. (5) with period T(f(\).



Follow solutions

of this

complex equation as € is

varied.

Solutions destroyed in
saddle-node bifurcation.
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e Varying é and €:
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e Stability and other bifurcation curves found numerically.
e What is missing: proper stability calculations.

e “Chimeras in networks of planar oscillators” C. R. Laing. Phys. Rev. E
(Vol. 81, 066221, 2010)



Random networks

e Consider a pair of populations of IN non-identical phase oscillators, with
coupling both within and between populations.

do? 7 N v N
R A w1.—|-—ZAjksin(9;—91-—a)—l——ZBijiﬂ(Oi—Hl'_0‘)
dt 7N & ! N = ’
d6? N al
k=1 k=1

e Superscript labels population.
e All w taken from Lorentzian distribution.
e 11 and v are overall coupling strengths within and between populations.

® Ak, Bjk, Cji and D are constants, as is a.



e When Agk = B]k = C]k = ng = 1, have all-to-all coupling within
and between populations:
1
at}
dt
2
a3
dt




e Known to support stationary chimera states.

Movie
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e What happens when connectivity within and between populations is not
all-to-all?

e We fix the connectivity by randomly setting A;; = constant or zero
(details later) and similarly for Bjg, Cjk, D -

e Then consider an infinite ensemble of networks with this fixed connec-
tivity, but each having different realisations of the w’s [intrinsic frequencies,
distribution g(w)].

e By averaging over this ensemble we obtain ODEs for the “order parame-
ter” at each node.



e Still have 2N ODEs, but they give information about typical dynamics
of node.

e Chimera states are fixed points of these ODEs (they are not fixed points
of the oscillator dynamics) so can be followed as parameters are varied.

e Do this multiple times for statistically-similar networks to gain insight into
effects of changing connectivities.

e |dea first used by Barlev et al. (2011).



e Consider an ensemble of networks with fixed connectivity.
e Let number of members of the ensemble go to infinity.

e We describe the state of population 1 by the probability density function
FL61,03,...,05;wi,way...wh;t)

and population 2 by the function
F2(02,602,...,0%; w3, w3, ... wiit)

which, by conservation of oscillators, satisfy

arc N o do?
_7 - ol _J — 0
v o | (G

foro =1, 2.



e Using Ott/Antonsen ansatz and properties of Lorentzian (width A) we
obtain

da _

d—t’“ — —Aay + (R, — Ria?)/2
db _

d—tk — —Aby + (S — Sib?)/2

fork =1,... N where
Ry =e ' (uAp +vBy) S =e “*(uCy + vDy)

and
1 N 1 N _

1 N 1 X
Ci=— S Cib D;=—Y Dga
J NkZ:]L 7Kk 7 Ng::1 Ik



e a;, = (e'¥%). Magnitude gives “peaked-ness” of phase distribution at
node k in population 1 (over ensemble).

e Phase of a;, gives angle about which distribution is peaked.

e Similarly for by, and population 2.
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Sparse connectivity — Erdos-Rényi

e Randomly delete entries from the connectivity matrices A, B, C and D,
and increase remaining values of the weights to compensate.

Ao — 1/p with probability p
I8~ Y0  with probability 1 — p

and similarly for B, C, D.

e p = 1 = full connectivity.



Steady state: p = 0.97. |Corresponding chimera in phase network
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e Defining 3 = w/2 — «, stable chimera states undergo a saddle-node
bifurcation as 3 is increased.

e This value decreases as the networks are made more sparse.
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e Writingu = (1 + E)/2and v = (1 — E)/2, stable chimeras undergo
a Hopf bifurcation as F is increased.

e This value also decreases as the networks are made more sparse.
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e We can induce oscillations by uniformly (and randomly) removing
connections within and between populations.
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Sparse connectivity — Chung-Lu-type networks
e Assign each oscillator in a population a weight w; = N(¢/N)"

e Probability p;; of a connection between oscillators 2 and j is

. W; W,
D;j = min , 1
Dk Wk

e Normalise connection strengths so that sum of matrix entries = N2.

e » = 0 = full connectivity.



e Increasing r gives long tail towards lower degrees.

Degree distributions:
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e Typical connectivity matrix:

e Symmetric (by construction) so in-degree = out-degree.

e Number of connections removed within network = number removed
between networks.



e Increasing r decreases value of 3 at which saddle-node bifurcation oc-
curs:
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e Increasing r increases value of E at which Hopf bifurcation occurs:
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e We can supress oscillations by randomly removing connections within
and between populations (in this prescribed way). Opposite of E-R.
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Summary

e Averaged over ensemble of networks with same connectivity but different
intrinsic frequencies to obtain ODEs for “order parameter” at each node.

e Chimera states are quite fragile: significant shifts in saddle-node
bifurcations for p = 0.9 and » = 0.02.

e Oscillating chimeras due to Hopf bifurcation can be created (E-R) or
destroyed (C-L) by randomly removing connections (in a specified way).

e Qualitatively similar results for Gaussian rather than Lorenztian frequency
distribution.

e “Chimeras in random non-complete networks of phase oscillators.” C. R.
Laing, K. Rajendran and I. G. Kevrekidis. Chaos, (vol. 22. 013132, 2012).



Overall summary

e Chimeras occur in systems of non-identical oscillators (not shown).

e Non-local coupling not necessary.

e Chimeras occur in networks of planar (Stuart-Landau) oscillators.

e Somewhat robust to deletion of connections in two sub-network case.
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