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• Chimeras have been known since 2002.

• Early papers considered a ring of identical phase oscillators with nonlocal
coupling, or a pair of all-to-all coupled subnetworks.

• Natural questions:

1. Do we need identical oscillators?

2. Do we need all-to-all coupling?

3. Do we need nonlocal coupling?

4. Do chimeras occur in networks of more general oscillators?

• I will show how some of these questions were answered.



Nonlocal coupling

• Consider a network of phase oscillators on a ring with nonlocal coupling:

dθi

dt
= ω −

1

N

N∑

j=0

Gij sin (θi − θj + α)

where

Gij = e−5|i−j|/N

and |i− j| is shortest distance between oscillators i and j on ring.
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For some initial conditions, and values of α, we get chimeras:
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Even though oscillators are identical and coupled in highly-symmetric way,
they split into synchronous and asynchronous groups.

Movie. Phases are shown in a coordinate frame rotating with synchronous
oscillators.



• Thought to require nonlocal coupling.

• Is that true? Where does nonlocal coupling come from?

Consider general reaction-diffusion equation on 1D domain Ω with only
local interactions via diffusion in one variable:

∂u

∂t
= f(u) + v (1)

ε
∂v

∂t
= g(u)− v +

∂2v

∂x2
(2)

ε small⇒ separation of timescales: u is “slow”, v is “fast.”

Taking limit of infinitely fast dynamics for v, i.e. setting ε = 0, gives
(

1−
∂2

∂x2

)
v = g(u)



• If h(x) is the Green’s function associated with
(
1− ∂2

∂x2

)
on Ω

v(x) =

∫

Ω
h(x− y)g(u(y)) dy

and substituting this into (1) we obtain nonlocal equation for u:

∂u

∂t
= f(u) +

∫

Ω
h(x− y)g(u(y)) dy

[For Ω = R and lim|x|→∞ h(x) = 0, h(x) = e−|x|/2.]

•We will do the network analogue of this, but not set ε = 0.



Model:

dθj

dt
= ωj − Re

(
zje
−iθj

)

ε
dzj

dt
= Aei(θj+β) − zj +

zj+1 − 2zj + zj−1

(∆x)2

for j = 1, 2 . . . N , where ∆x = L/N ; A, β and ε are all constants.

• State of oscillator j described by two variables: θj ∈ [0, 2π) and
zj ∈ C.

•ωj randomly chosen from a Lorentzian distribution with half-width-at-half-
maximum σ centred at ω0, namely

g(ω) =
σ/π

(ω − ω0)2 + σ2



Does show chimera at ε = 0.2

(a): sin θj;
(b): sin (arg (zj));
(c): |zj|.
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(c)

100 200 300 400 500

20

40

60

80

100 0.4

0.6

0.8

1

1.2

−0.5

0

0.5

−0.5

0

0.5



Relationship to previous models:

• Set ε = 0. If zj is the jth entry of the vector z ∈ CN and similarly for
θj,

(I −D)z = Aei(θ+β)

where I is N ×N identity matrix and D is matrix representation of clas-
sical second difference operator with periodic boundary conditions.

• Defining G = (I −D)−1 we have

zj = A
N∑

k=1

Gjke
i(θk+β)

and thus

dθj

dt
= ωj −A

N∑

k=1

Gjk cos (θj − θk − β)



where

Gjk =
1

N

N−1∑

r=0

exp (−2πir|j − k|/N)

1 +
2[1−cos (2πr/N)]

(∆x)2

.
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Analysis for ε 6= 0 using self-consistency

• System is invariant under the simultaneous shift: θj 7→ θj + γ and
zj 7→ zje

iγ for all j.

• Move to a rotating coordinate frame: φj ≡ θj −Ωt and yj ≡ zje−iΩt,
where Ω is to be determined.

• Take the limit N →∞:

∂φ

∂t
= ω − Re

(
ye−iφ

)
− Ω (3)

ε
∂y

∂t
= Aei(φ+β) − y +

∂2y

∂x2
− iεΩy (4)

• Search for solutions for which y is stationary, i.e. just a function of space.
Let such a solution be y(x) = R(x)eiΘ(x).



• To obtain a stationary solution of (4) replace eiφ by its expected value,
calculated using density of φ, inversely proportional to its velocity (∂φ/∂t).

• Need to solve

0 = Aeiβ
∫ ∞

−∞

∫ 2π

0
eiφp(φ|ω)g(ω)dφ dω − y +

∂2y

∂x2
− iεΩy

where the density of φ given ω is

p(φ|ω) =

√
(ω − Ω)2 −R2

2π|ω − Ω−R cos (Θ− φ)|

and g(ω) is the Lorentzian.



• Evaluating the integrals we obtain

Aei(Θ+β)

R

[
ω0 + iσ − Ω−

√
(ω0 + iσ − Ω)2 −R2

]

−
(

1 + iεΩ−
∂2

∂x2

)
ReiΘ = 0

• A nonlinear eigenproblem: unknowns R(x),Θ(x) and eigenvalue Ω.



Once a solution is found, follow it as ω0 and ε are varied. Find they are
destroyed in saddle-node bifurcations:
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(σ is width of frequency distribution, ω0 is centre.)



• Local coupling through diffusion (as here) more natural.

•What is missing: stability.

• “Chimeras in networks with purely local coupling”. Carlo R. Laing.
Phys. Rev. E. (Vol. 92, 050904(R), 2015).



Planar oscillators

• Many systems studied use phase oscillators.

• Chimeras first observed in systems of planar (2D) oscillators, so they
certainly exist, but what about analysis?

• Here we consider two coupled subnetworks of planar oscillators with a
parameter, ε, such that as ε→ 0 we recover previously studied system of
phase oscillators.



The model we consider is
dXj

dt
= iωXj + ε−1

{
1− (1 + δεi)|Xj|2

}
Xj

+ e−iα


 µ
N

N∑

k=1

Xk +
ν

N

N∑

k=1

XN+k




for j = 1, . . . N and

dXj

dt
= iωXj + ε−1

{
1− (1 + δεi)|Xj|2

}
Xj

+ e−iα


 µ
N

N∑

k=1

XN+k +
ν

N

N∑

k=1

Xk




for j = N + 1, . . . 2N , where Xj ∈ C, and ω, ε, α, µ and ν ∈ R.

• Pair of populations of N Stuart-Landau oscillators; all-to-all coupling
within each population of strength µ; all-to-all coupling between the two
populations of strength ν.



Defining Xj = rje
iθj , have

drj

dt
= ε−1(1− r2

j )rj +
µ

N

N∑

k=1

rk cos (θk − θj − α)

+
ν

N

N∑

k=1

rN+k cos (θN+k − θj − α)

dθj

dt
= ω − δr2

j +
1

rj


 µ
N

N∑

k=1

rk sin (θk − θj − α)

+
ν

N

N∑

k=1

rN+k sin (θN+k − θj − α)




for first population. Similarly for second.

As ε→ 0, rj → 1, and recover system of Abrams et al., 2008.



Snapshot of chimera
for N = 500.
Population 2 perfectly
sychronised.
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• To analyse, set Xj = Y for all j in population 2.

• Since dynamics depend on phase differences, go to rotating coordinate
frame (speed Ω) such that Y is constant.

• Rotate frame such that Y is real.

Then

0 = i(ω − Ω)Y + ε−1
{

1− (1 + δεi)Y 2
}
Y + e−iα

(
µY + νX̂

)

where

X̂ ≡
1

N

N∑

k=1

Xk

Given X̂, can solve this for Y .



• Each oscillator in population 1 satisfies

dX

dt
= i

[
δY 2 + µ sinα− (ν/Y )Im

{
e−iαX̂

}]
X

+ ε−1
{

1−(1+δεi)|X|2
}
X+e−iα[µX̂+νY ] (5)

• Waveforms are equally staggered in time (splay state) so that as N →
∞, X̂ and Y become constant.

• Can replace mean of population 1 by integral over one period, so self-
consistency equation defining chimera is

X̂ =
1

T (X̂)

∫ T (X̂)

0
X(t; X̂) dt

where X(t; X̂) is a periodic solution of Eq. (5) with period T (X̂).



Follow solutions of this
complex equation as ε is
varied.

Solutions destroyed in
saddle-node bifurcation.
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• Varying δ and ε:
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• Stability and other bifurcation curves found numerically.

•What is missing: proper stability calculations.

• “Chimeras in networks of planar oscillators” C. R. Laing. Phys. Rev. E
(Vol. 81, 066221, 2010)



Random networks

• Consider a pair of populations of N non-identical phase oscillators, with
coupling both within and between populations.

dθ1
j

dt
= ω1

j +
µ

N

N∑

k=1

Ajk sin (θ1
k − θ

1
j − α) +

ν

N

N∑

k=1

Bjk sin (θ2
k − θ

1
j − α)

dθ2
j

dt
= ω2

j +
µ

N

N∑

k=1

Cjk sin (θ2
k − θ

2
j − α) +

ν

N

N∑

k=1

Djk sin (θ1
k − θ

2
j − α)

• Superscript labels population.

• All ω taken from Lorentzian distribution.

• µ and ν are overall coupling strengths within and between populations.

• Ajk, Bjk, Cjk and Djk are constants, as is α.



• When Ajk = Bjk = Cjk = Djk = 1, have all-to-all coupling within
and between populations:

dθ1
j

dt
= ω1

j +
µ

N

N∑

k=1

sin (θ1
k − θ

1
j − α) +

ν

N

N∑

k=1

sin (θ2
k − θ

1
j − α)

dθ2
j

dt
= ω2

j +
µ

N

N∑

k=1

sin (θ2
k − θ

2
j − α) +

ν

N

N∑

k=1

sin (θ1
k − θ

2
j − α)



• Known to support stationary chimera states. Movie
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• And oscillating chimera states. Movie



• What happens when connectivity within and between populations is not
all-to-all?

• We fix the connectivity by randomly setting Ajk = constant or zero
(details later) and similarly for Bjk, Cjk, Djk.

• Then consider an infinite ensemble of networks with this fixed connec-
tivity, but each having different realisations of the ω’s [intrinsic frequencies,
distribution g(ω)].

• By averaging over this ensemble we obtain ODEs for the “order parame-
ter” at each node.



• Still have 2N ODEs, but they give information about typical dynamics
of node.

• Chimera states are fixed points of these ODEs (they are not fixed points
of the oscillator dynamics) so can be followed as parameters are varied.

• Do this multiple times for statistically-similar networks to gain insight into
effects of changing connectivities.

• Idea first used by Barlev et al. (2011).



• Consider an ensemble of networks with fixed connectivity.

• Let number of members of the ensemble go to infinity.

•We describe the state of population 1 by the probability density function

f1(θ1
1, θ

1
2, . . . , θ

1
N ;ω1

1, ω
1
2, . . . ω

1
N ; t)

and population 2 by the function

f2(θ2
1, θ

2
2, . . . , θ

2
N ;ω2

1, ω
2
2, . . . ω

2
N ; t)

which, by conservation of oscillators, satisfy

∂fσ

∂t
+

N∑

j=1

∂

∂θσj

[
fσ
(
dθσj

dt

)]
= 0

for σ = 1, 2.



• Using Ott/Antonsen ansatz and properties of Lorentzian (width ∆) we
obtain

dak

dt
= −∆ak + (Rk −Rka2

k)/2

dbk

dt
= −∆bk + (Sk − Skb2

k)/2

for k = 1, . . . N where

Rk = e−iα (µAk + νBk) Sk = e−iα (µCk + νDk)

and

Aj =
1

N

N∑

k=1

Ajkak Bj =
1

N

N∑

k=1

Bjkbk

Cj =
1

N

N∑

k=1

Cjkbk Dj =
1

N

N∑

k=1

Djkak



• ak = 〈eiθk〉. Magnitude gives “peaked-ness” of phase distribution at
node k in population 1 (over ensemble).

• Phase of ak gives angle about which distribution is peaked.

• Similarly for bk and population 2.
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Sparse connectivity — Erdös-Rényi

• Randomly delete entries from the connectivity matricesA,B,C andD,
and increase remaining values of the weights to compensate.

Ajk =

{
1/p with probability p
0 with probability 1− p

and similarly for B,C,D.

• p = 1⇒ full connectivity.



Steady state: p = 0.97. Corresponding chimera in phase network
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• Defining β = π/2 − α, stable chimera states undergo a saddle-node
bifurcation as β is increased.

• This value decreases as the networks are made more sparse.

0.92 0.94 0.96 0.98 1
0.085

0.09

0.095

0.1

0.105

0.11

0.115

p

β sn



•Writing µ = (1 + E)/2 and ν = (1− E)/2, stable chimeras undergo
a Hopf bifurcation as E is increased.

• This value also decreases as the networks are made more sparse.
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• We can induce oscillations by uniformly (and randomly) removing
connections within and between populations.
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Sparse connectivity — Chung-Lu-type networks

• Assign each oscillator in a population a weight wi = N(i/N)r

• Probability pij of a connection between oscillators i and j is

pij = min

(
wiwj∑
kwk

, 1

)

• Normalise connection strengths so that sum of matrix entries = N2.

• r = 0⇒ full connectivity.



• Increasing r gives long tail towards lower degrees.

Degree distributions:
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• Typical connectivity matrix:
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• Symmetric (by construction) so in-degree = out-degree.

• Number of connections removed within network ≈ number removed
between networks.



• Increasing r decreases value of β at which saddle-node bifurcation oc-
curs:
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• Increasing r increases value of E at which Hopf bifurcation occurs:
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• We can supress oscillations by randomly removing connections within
and between populations (in this prescribed way). Opposite of E-R.
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Summary

• Averaged over ensemble of networks with same connectivity but different
intrinsic frequencies to obtain ODEs for “order parameter” at each node.

• Chimera states are quite fragile: significant shifts in saddle-node
bifurcations for p ≈ 0.9 and r ≈ 0.02.

• Oscillating chimeras due to Hopf bifurcation can be created (E-R) or
destroyed (C-L) by randomly removing connections (in a specified way).

•Qualitatively similar results for Gaussian rather than Lorenztian frequency
distribution.

• “Chimeras in random non-complete networks of phase oscillators.” C. R.
Laing, K. Rajendran and I. G. Kevrekidis. Chaos, (vol. 22. 013132, 2012).



Overall summary

• Chimeras occur in systems of non-identical oscillators (not shown).

• Non-local coupling not necessary.

• Chimeras occur in networks of planar (Stuart-Landau) oscillators.

• Somewhat robust to deletion of connections in two sub-network case.
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