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Take-home message

Delay dynamics can be lovely simple in their equation of
motion. . .

. . . They can also be amazingly complex in their solutions
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How familiar are we with delays?

Actually every day, everywhere!

• Living systems (population dynamics, blood cell
regulation mechanisms, people reaction after
perception and neural system processing,. . . )

• Traffic jam, accordeon car flow
• Distant control of satelites or rockets in space
• Game of vertical stick control at the tip of a finger
• Human stand-up position control (and effects of

increased perception delay after alcoolic drinks)
• Hot and cold oscillations at shower start

. . . Any time when information transport occurs (at finite
speed), thus resulting in longer propagation time
compared to intrinsic dynamical time scales
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Delay equations, complexity & apps

εẋ(t) = −x(t) + β sin2[x(t − 1) + Φ0]
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NLDDE modeling through signal theory

Linear first order scalar dynamics

τ dx
dt (t) + x(t) = 0, τ : response time

ẋ = −γ · x, γ = 1/τ : rate of change
Simplest modeling of the un-avoidable continuous time (finite speed, or rate) physical transients

Time and Fourier domains (FT≡ Fourier Transform)

H(ω) = H0
1+iωτ = X(ω)

E(ω)

with X(ω) =FT[x(t)], and E(ω) =FT[e(t)], & ωc = 1/τ

(1 + iωτ) · X(ω) = H0 · E(ω) FT−1
−−−→ x(t) + τ dx

dt (t) = H0 · e(t)
(remember FT−1[iω × (·)] = d

dt FT−1[(·)])

h(t) =FT−1[H(ω)] [(causal) impulse reponse] → x(t) =
∫ t
−∞ h(t− ξ) · e(ξ) dξ
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Solutions, initial conditions, phase space

Autonomous case (e(t) = e0,⇔ e ≡ 0 with z = x− e0)

τ ẋ + x = 0, 0: (dead) fixed point (ẋ = 0)
⇒ x(t) = x0 e−t/τ = x0 e−γt, γ: convergence rate→ 0, ∀x0

−γ :< 0 eigenvalue (stable); Size of the init. cond., dim x0 = 1 ⇒ 1D dynamics (or phase space)

Feedback (e(t) = f [x(t)]): stability, multi-stability
Fixed point(s): {xF | x = f [x]}
(Graphics: intersect(s) between y = f [x] and y = x)

Stability @ xF: linearization for x(t)− xF = δx(t)� 1,
f [x] = xF + δx · f ′[xF] ⇒ δ̇x = −γ(1− f ′xF ) · δx = −γfb · δx
f ′xF

< 0 ≡ negative feedback, speed up the rate; f ′xF
> 0, slow down the rate, possibly unstable if > 1

Delayed feedback (e(t) = f [x(t − τD)]): ∞−dimensional
Fixed point(s): {xF | x = f [x]}
Stability: δx(t) = a · eσt, eigenvalues: {σ ∈ C | 1 + στ = e−στD · f ′xF},
Size of initial conditions: {x(t), t ∈ [−τD; 0]} ⇒ ∞D phase space
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Discrete time dynamics: Mapping

Large delay case (τ/τD → 0): simplified to a 1D (Map)!!!
• Logistic map (feedback + sample & hold) xn+1 = λ xn(1− xn)

• DDE (large, but finite, delay with a feedback loop)

• Similarities, but still strong differences (singular limit map)
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Design tips for an NLDDE in Optics

Concepts of the first chaotic optical setup

A closed loop oscillator architecture:
• All-optical Ikeda ring cavity

• Generic bloc diagram setup

Modeling, DDE

τ
dx
dt

(t) = −x(t) + FNL[x(t − τD)]

• Instantaneous part (linear filter): atomic level life time, Kerr time scale

τ
dx
dt

(t) + x(t) = z(t) ↔ H(f ) = FT[h(t)] =
X(f )

Z(f )
=

1
1 + i2πf τ

• Time delayed feedback: τD, time of flight of the light in the cavity
• Nonlinear delayed driving force: input and feedback interference

z(t) = FNL[x(t − τD)] = β cos2[x(t − τD) + Φ]
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A paradigm for the study of NLDDE complexity

From an Optics Gedanken experiment. . .
. . . to flexible and powerful photonic systems

• The Ikeda ring cavity
(Ikeda, Opt.Commun. 1979).

• Bulk electro-optic
(Gibbs et al., Phys.Rev.Lett. 1981).

• Integrated optics Mach-Zehnder

(Neyer and Voges, IEEE J.Quant.Electron. 1982;
Yao and Maleki, Electr. Lett. 1994).

• Wavelength & EO intensity
(or phase) delay dynamics

(Larger et al., IEEE J.Quant.Electron. 1998;
Lavrov et al., Phys. Rev. E 2009).
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Laser wavelength dynamics

2-wave imbalanced interferometer:
fNL(x) = β sin2[x + Φ]

Fabry-Pérot interferometer:
fNL(x) = β/[1 + m · sin2(x + Φ)]

with x = π∆/λ

• Nicely matched exp. & num.
bifurcation diagrams
(increasing Φ0)

• Record non linearity strength
up to 14 extrema

• FM chaos: operating principles
transfered to electronics

→ 1st bandpass delay dynamics
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Summary about DDE physics & concepts

Mackey–Glass- or Ikeda-like DDE

τ · dx
dt

(t) = −x(t) + fNL[x(t − τD)]

Non-delayed (instantaneous) terms:
- Linear differential equation, rate of change γ = 1/τ

- Stable linear Fourier filter, frequency cut-off (2πτ)−1

- A few degrees of freedom≡ filter or diff.eq. order

Delayed (feedback) term:
- Non-linearity (slope sign, # extrema, multi-stability),

- Delay (infinite degrees of freedom, stability)

- Large delay case, τD � τ

Unusual features for DDE models

• Bandpass Fourier filter, or integro-differential delay equation
• Positive slope operating point
• Carved nonlinear function profile (e.g. min/max assymmetry)
• Multiple delay architectures

τ ·dx
dt

(t)+
1
θ

∫ t

t0
x(ξ) dξ = −x(t)+fNL[x(t−τD)]

τ · dx
dt

(t) = −x(t)−y(t) + fNL[x(t − τD)]

θ · dy
dt

(t) = x(t)
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Space-Time representation of DDE

Normalization wrt Delay τD: s = t/τD, and ε = τ/τD

ε ẋ(s) = −x(s) + fNL[x(s− 1)], where ẋ =
dx
ds
.

Large delay case: ε� 1, potentially high dimensional attractor
∞−dimensional phase space, initial condition: x(s), s ∈ [−1, 0]

Space-time representation

• Virtual space variable σ,

σ ∈ [0; 1 + γ] with γ = O(ε).

• Discrete time n

n → (n + 1)

s = n(1 + γ) + σ → s = (n + 1)(1 + γ) + σ

F.T. Arecchi, et al. Phys. Rev. A, 1992G. Giacomelli, et al. EPL, 2012
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ε ẋ(s) = −x(s) + fNL[x(s− 1)], where ẋ =
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Space-time analogy: analytical support

Convolution product involving the linear impulse response,

h(t) = FT−1[H(ω)]

x(s) =
∫ s
−∞ h(s− ξ) · fNL[x(ξ − 1)] dξ with s = n(1 + γ) + σ

. . . partitioning the time domain:

]−∞; s] = ]−∞ ; n(1 + γ) + σ ] ∪ ]n(1 + γ) + σ ; (n + 1)(1 + γ) + σ ]

and make a change of integration variable ξ ↔ ξ − (n + 1)(1 + γ) + γ

⇒ xn+1(σ) = Iε(n, σ) +

∫ σ+γ

σ−1
h(σ + γ − ξ) · fNL[xn(ξ)] dξ, with Iε � xn(σ){

∂φ

∂t
= ω −

∫ π

−π
G(x− x′) · sin[φ(x, t)− φ(x′, t) + α] dx

}

LL, Penkovsky, Maistrenko, Nat. Commun. 2015, DOI: 10.1038/ncomms8752

Remark: the NL dynamics and coupling features of each virtual oscillator are by construction identical at any position σ!!!
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Chimera states. . .

What is a Chimera state?
• Network of coupled oscillators with clusters of incongruent motions
• Predicted numerically in 2002, derived for a particular case in 2004, and

1st observed experimentally in 2012
• Not observed (initially) with local coupling, neither with global one

Features allowing for Chimera states?
• Network of coupled identical oscillators, spatio-temporal dynamics
• Requires non-local nonlinear coupling between oscillator nodes
• Important parameters: coupling strength, and coupling distance

Y. Kuramoto and D. Battogtokh, Nonlinear Phenom. Complex Syst. 5, 380 (2002); D. M. Abrams and S. H. Strogatz,
Phys. Rev. Lett. 93, 174102 (2004); I. Omelchenko et al. Phys. Rev. Lett. 106 234102 (2011); A. M. Hagerstrom et al. &
M. Tinsley et al., Nat. Phys. 8, 658 & 662 (2012)
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DDE recipe for chimera states

Symmetric fNL[x]: Similar σ−“clusters” for x < 0 and x > 0

Asymmetric fNL[x]: Distinct σ−clusters for x < 0 and x > 0

And i DDE

δ

∫ s

s0

x(ξ) dξ + x(s) + ε
dx
ds

(s) = fNL[x(s− 1)]
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Laser based delay dynamics experiment
Tunable SC Laser setup, for i DDE Chimera

fNL[x]: the Airy function of a Fabry-Pérot interferometer

⇒ fNL[λ] = β
1+m sin2(2πne/λ)

= β
1+m sin2(x+Φ0)

with x = 2πne
λ2

0
δλ and Φ0 = 2πne

λ0+Stun. iDBR0

LL, Penkovsky, Maistrenko, Nat. Commun. 2015, DOI: 10.1038/ncomms8752
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1st Chimera in (σ, n)−space

Numerics:

• β = 0.6, ν0 = 1, ε = 5.10−3,
δ = 1.6× 10−2

• Initial conditions: small amplitude
white noise (repeated several times
with different noise realizations)

• Calculated durations: Thousands of n

Experiment. . .

• Very close amplitude and time parameters,
τD = 2.54ms, θ = 160ms, τ = 12.7µs

• Initial conditions forced by background noise

• Recording of up to 16× 106 points,
allowing for a few thousands of n

LL et al. Phys. Rev. Lett. 111 054103 (2013)
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Bifurcations in (ε, δ)−space

ε = τ/τD

δ = τD/θ
β ' 1.5
Φ0 ' −0.4
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Double delay dynamics: toward 2D chimera

Setup and delay dynamics features

Double delay nonlinear integro-differential equation

ε
dx
dt

(t) + x(t) + δ

∫
x(ξ)dξ = (1− γ) fNL[x(t− τ1)] + γ fNL[x(t− τ2)]
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2D-chimera with chaotic sea, or chaotic island
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Isolated pulses
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Outline

Introduction

NLDDE in theory and practice

Space-Time analogy: From DDE to Chimera

DDE Apps: chaos communications, µwave radar, photonic AI

Hidden bonus slides
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Optical Chaos Communications

Emitter-Receiver architecture
• Fully developed chaos (strong feedback gain, highly NL operation)

• In-loop message insertion (message-perturbed chaotic attractor, with
comparable amplitude)

• Real-time encoding and decoding up to 10 Gb/s
• Field experiment over more 100 km, robust vs. fiber channel issues

Application resulted in a modified Ikeda model

• Broadband bandpass feedback (imposed by the high data rate;
introduces an integral term with a slow time scale; time scales spanning
over 6 orders of magnitude)

• Design of multiple delays dynamics (to improve the SNR of the
transmission, electro-optic phase setup→ 4 time scale dynamics)

ε ẋ = −x(s) + δ y(s) + β cos2[x(s− 1) + Φ]

ẏ = x(s)
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ε ẋ = −x(s) + δ y(s) + β cos2[x(s− 1) + Φ]
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High spectral purity µwave for Radar

Modified physical parameters
• Limit cycle operation (reduced feedback gain)

• Narrow bandpass feedback, or weakly damped feedback filtering
(central freq. 10 GHz, bandwidth 40 MHz)

2m
ω0

∫ t

t0

x(ξ) dξ + x(t) +
1

2mω0

dx
dt

(t) = β{cos2[x(t − τD) + Φ]− cos2 Φ}

• Extremely long delay line (4 km vs a few meters)
• Dynamics still high dimensional, however forced around a central

frequency

Examples of obtained performances
• 10-20dB lower phase noise power spectral density (vs. DRO):

-140 dB/Hz @ 10 kHz from the 10 GHz carrier
• Accurate theoretical phase noise modeling (noise ≡ small external

perturbation, non-autonomous dynamics)
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Photonic brain-inspired computing

Concepts
• Novel paradigm refered as to Echo State Network (ESM),

Liquid State Machine (LSM) and also Reservoir Computing (RC)

• Processing of time varying information through nonlinear transients
observed in a high-dimensional phase space

• Derived from RNN, however learning simplified to the output layer only
(other weights, input and internal, chosen at random)

• Instead of the high-dimensional of an RNN, let’s try to use a delay
dynamics→ assumes actual validity of a space-time analogy

Achievements
• First efficient hardware implementing RC concept (in electronic and

optoelectronic delay dynamics)
• Operation around a stable fixed point (fading memory property)
• 400 to 1000 nodes/neurons can be emulated
• Speech recognition successfully demonstrated, with state of the art

performances (0% WER, speed up to 1 million words/s)
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Real spatio-temporal photonic RC
Experimental setup (D. Brunner, M. Jacquot)
• Nodes are spatially distributed in an image plane
• Coupling between nodes makes use of DOE
• Nonlinear is performed by SLM (polarization filtering)
• Read-Out is full implemented (cascaded DMD and a photodiode)

In+1
i = sin

2

β
∣∣∣∣∣∣

N∑
j=1

κi,j En
j

∣∣∣∣∣∣
2

+ γκ
inj
i un+1 + Θ0


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Real spatio-temporal photonic RC

Elements characterization
• Node coupling: two cascaded DOE

• Nonlinear transformation (SLM)
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Real spatio-temporal photonic RC

Chaotic time series prediction
• Random initialization and learing

• After re-inforcement learning
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Thank you for attention
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A chaotic rainbow. . .

From toy-model to toy-experiment:
the (visible) wavelength chaos setup

• Delay dynamics on the color sliced
by an AOTF from the “rainbow” of a
SC white light source

• Friendly “science demo” (many diffracted
rainbows with a chaotically moving dark line)

• Easily transportable experiment
(no optical table required)

• Setup mimicking the shape of our
new FEMTO-ST building in Besançon.

(Chembo et al., Phys. Rev. A 94 2016)
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