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Phase dynamics: brief summary

Consider general N-dimensional L1
self-sustained oscillator

X =G(X) ,x = (1, T2,...,TN)

with a stable limit cycle X,

Phase is defined from the condition ¢ —w = 271/T

and can be introduced in two steps:

1. phase on the limit cycle

2. phase 1n the basin of attraction of the limit cycle



Phase on the limit cycle

We start with some (arbitrary) zero point, X(f;) = @(X(%))) = 0

t— 1,
I

and define phase as | @ = 27

A remark: phase can be defined either on [0,27) interval or
on the real line



Phase in the vicinity of the cycle: Isochrons

/o Str()bOSCOpiC QbservatiOIl
with the period T'= 27x/w

I() Isochrons:
. Lines of constant phase

(Generally, they are N-1
dimensional hypersurfaces)

A

7, (X(t)) = @(X*) WHERE X* = lim x(¢t + mT)

n— 00

Thus, we have ¢ = ¢ (x)



Phase reduction

Perturbation technique for weak coupling,
Malkin 1956, Kuramoto 1984

The forced system X = G(X) + ep(X, ?)

coupling strength, small parameter

e K |A_]

Negative Lyapunov exponent
(determines the stability of the limit cycle)



Phase reduction

Perturbation technique for weak coupling,
Malkin 1956, Kuramoto 1984

The forced system X = G(X) + ep(X, ?)

coupling strength, small parameter

in the first approximation In € one writes

o0
P(X) = ™ X = — [G(X) + ep(x, 1)
040 op
= 1~ wA 1
0, — epx, 1) X% @ — X eP(X, 1)

where we 1. use the phase definition for the unperturbed system

2. we compute the r.h.s. on the cycle



Phase reduction
The forced system X = G(X) + €p(X, 1)

v

00 =0+ 2| epxn
P(X) = w EPX.,,
)¢ !
X7
Let force be periodic we characterise it by its phase w, 1y = v

Then p(X, 1) = Py, 1)

Points on the limit cycle are 1n a one-to-one correspondence to @,
ie. X7 = X(@) we obtain a closed equation for the phase:

» = w+ eQ(p,y)



Phase reduction: the coupling function
The forced system X = G(X) + ep(X, 1)

¢ /coupling function

Phase equation @ = @ + €0(@, y)

A )—a—¢ X (@), W)
where Cﬂaw—ax pXTQD’W

XT



Phase reduction: the Winfree form
The forced system X = G(X) + ep(X, 1)

¢ /coupling function

Phase equation @ = @ + €0(@, y)
0
where Q(@,y) = . pPxX (@), )
X
Notice: if the forcing is sca)arfp(x, ) = p(y)then

O, ) = Z(p)p(y)

\Phase Sensitivity Curve, or

Phase Response Curve (PRC)

Thus, we have | @ = w + €0(@,w) = © + Z(@)p(y)

e —

the Winfree form
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Phase reduction: the Kuramoto-Daido form
The forced system X = G(X) + ep(X, 1)

¢ /coupling function

Phase equation @ = @ + €0(@, y)
Ifnorm || €0 ||<< @ the phase equation can be averaged, keeping

the resonance terms

If w/v ~ m/n then averaging yields

® = w + eh(ngp — my)
——

the Kuramoto-Daido form
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Phase reduction: beyond first approximation
Thus, for weak coupling, 1.¢. 1n the first approximation one obtains

¢ =+ eQ(p,y)
Let us denote this explicitly:

¢ =w+eQ(p,y)

k— order of approximation
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Phase reduction: beyond first approximation

Thus, for weak coupling, 1.¢. 1n the first approximation we obtained

¢ =w+el(p,y)
Let us denote this explicitly:

60 = @ T 8Q1(§0, l//)

&— order of approximation
Generally, one expects

7, =60+8Q1+82Q2+83Q3+ .=w+ 0@, y)

... but it is unknown, how to compute (),, (5, ...
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Phase reduction: problems

. Even computation of (J; is difficult if the isochrons are
not known analytically

. Power series representation remains a conjecture; there no
algorithms for computation of (J,, (s, ...

14



Phase reduction: problems

. Even computation of (J; is a problem if the isochrons are
not known analytically

. Power series representation remains a conjecture; there no
algorithms for computation of (J,, (s, ...

... and approaches

. Extension to the case of strong coupling with account of
deviations from the limit cycle: a number of attempts, see
e.g. recent review B. Monga et al, Biol. Cybern., 2019

. We suggest a numerical approach

15



The simplest model: the Stuart-Landau system

A=u+inNA—(1+ia)lA \ZA + ep(y), v =t
In polar coordinates, with A = Re':

R =uR — R’ + ep(y) - cos 0

0 =n—aR’?>— ep(y) - sinO/R
Isochrons are known analytically:

@ =0 —aln(R/Ry) WiTH Ry = \/ﬁ

(*)

Derivation with account of (*) yields

, acosd + sin @
O =w — R ep(y) WITH @ =1 — au

16



The Stuart-Landau system: PRC and coupling functions

, acosfd + sin @
O = w R ep(y) WITH @ =1 — au

For weak force R & R, = \//7 , 0 ~ (p ==gp well-known results

PRC: Z(p) = — u~"*(acos ¢ + sin @)
Linear coupling function for harmonic forcing p(y) = cosy :
0\(p.y) = — u~"*(acos @ +sing)cosy

Averaging (), for v & @ yields the Kuramoto-Daido function

hp —w) = —0.5u""*[acos(p — ) + sin(p — )]

17



Computing nonlinear coupling functions
P=w+e0Q +e*0,+0+ ... = o+ O, y)

Q(¢9 l//) — ng + inin

known from the theorg—J k— shall be obtained numerically
We simulate the forced Stuart-Landau system to obtain @(7), @(?)
and fit the rest term @, = @ — @ — €(; by a function of @,

Practically: we use kernel density estimation on an 100x100 grid

18



Fitting the coupling function

mp we fit the equation @, = Q ;. (@, W)

We use kernel density estimation onanz X n grid

n
with kernel K(x,y) = exp lz—(cosx + sin y)]
T

We start with time series @, x, @, Y

and for each point @, Y on the equidistant grid compute
Zk @, 1K@ — O, W — Y1)
> Ko - opw—up)

27 27r
Notice: the fitting works %/
in the absence of locking! %

Olp,yp) =

19



Computing nonlinear coupling functions
P=w+e0Q +e*0,+0+ ... = o+ O, y)

Q(¢9 l//) — ng + inin

known from the theorg—J k— shall be obtained numerically
We simulate the forced Stuart-Landau system to obtain @(7), @(?)
and fit the rest term @, = @ — @ — €(; by a function of @,

Practically: we use kernel density estimation on an 100x100 grid

We compute () ;. for = CONST and different values of &€

nlin

and obtain (J, 5 4 performing a polynomial fit in €

20



Stuart-Landau oscillator: nonlinear coupling functions

e = 0.05 v=20.3 e =0.55

4AA‘AAA

““““““
\\\\\\\\\\\\
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0.05
0.04
0.03
0.02
0.01

amplitudes of the Fourier modes
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Stuart-Landau oscillator: nonlinear coupling functions
v=03,a=0 Q.. = e°Qr + 205 + %0,

Q2 0.2

Description via
nonlinear function 1s

valid for coupling as
strong as € = (0.55!
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Nonlinear coupling functions: frequency dependence

()1 does not depend on the frequency of the force

Qnlin depends on the frequency of the force

0.04 — G-O k=0,i=0

1 S (b) k=2,1=0

_ O k=1,1=-1

§ \\ A k:2,l:-2

< | o) X¥—¥ k=3,[=-3
= =

Ir'

002+ f A -
v A
>

|
0 0.5 v 1 1.5
frequency of the force

)

amplitudes of the Fourier modes



Nonlinear coupling functions: y-scaling

Parameter 1 determines stability of the limit cycle

_1C\ '
2l
-3 -
Z
£ | _
slopex~ 2.15
51
-6 - | | | |
-0.6 -0.2 0.2 0.6 1
In(u)
Norm of Q . 1 —2.15 .
orm ot ¢/;,;;,, Scales as [ Nonlinear effects are
—0.5 !

Norm of Ql scales as u less visible for U — 0
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The Winfree form for strong forcing
In the first approximation: @ = w + €Z(@p)cos(vt)
For large € we obtain “effective” Z() by plotting

(p — _5
VS. ¢ FOR € cos(vt) > 10

€ cos(vr)

Red curve is linear PRC

Generally, the nonlinear coupling function cannot be represented
as a product!

25



Predicting synchronization regions with nonlinear
coupling functions

First order approximation for the Stuart-Landau system, for
a=0u=1,vr=w
@ = @ — €SN Y COSY

£ £
= W —Esin(¢+l//) +58in(l//— Q)

Averaged equation @ = @

This term determines 1:1 locking

Other locked state do not appear in the averaged equation!

Beyond the linear approximation: many Fourier terms,

many locking regions!

26



Stuart-Landau oscillator: synchronization domains

Beyond the linear approximation: many Fourier terms,

many locking regions!

e=0.7
32
3
<9
G
" . |
1 0.3
42 R <¢r>f . | . | .
0 0.5 | 1.5 2 2.5

Can a nonlinear phase model describe high-order locking?

27



Stuart-Landau oscillator: synchronization domains
Can a nonlinear phase model describe high-order locking?

We use a model reconstructed for v = 0.3, < 0.55
to make a prediction for € = 0.7
(for € > (.55 model reconstruction fails because of synchrony)

— ) =0+ 0, + €°0, + €0, + €*Q, 4th-order fit
1 2 3 4

W=

dg 0 3 A
—)d (a)+8Q1+8Q2+8Q3+8Q4)/1/

W iy —
We solve this equation numerically . | \ JE \
G i '\‘\\
for different o and € = ().”/ 1‘_ O
0 O|5 |1 | 1|.5 | é 2.5




Stuart-Landau oscillator: synchronization domains

Can a nonlinear phase model describe high-order locking?

We use a model reconstructed for v = 0.3, < 0.55
to make a prediction for € = 0.7

3 — true
i - - predicted
<2
G
1+ —
model constructed
_ * fmithis frequelncg

0 0.5 1 1.5 2 2.5
V 29



Stuart-Landau oscillator: synchronization domains

Nonlinear phase model describes high-order locking better
than integration of the first-order Winfree approximation

> \ nonlinear
3 - '\'/
Winfree|
u 1l
<2
G : .
- L N
i 026 028 0.3
model constructed \‘\\__
i ‘ for| this frequerllcg |
0 0.5 1 1.5 2 2.5
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How good is the Kuramoto-Daido model?

This model 1s obtained by averaging for weak forcing, but we can
formally exploit 1t for large amplitudes as well

® =+ h,, (ng —my)

We construct the model either via Fourier modes of the full model,

hn,m(ngu — my) = Z F(kn,_km) exp(ikng — ikmy)
k

or by a direct fit of @ — @ vs. np — my Mmob 27

Fourier

@» — @, h 4




How good is the Kuramoto-Daido model?

Fourier

; ; Co—y

The model /1,  yields a good prediction of the 1:1 locking domain

Prediction by the /1 3 model is bad
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The Stuart-Landau oscillator is a good model:
here the isochrons are known analytically

What to do in a general case?

33



Computing true phases on the fly
Consider a forced system: x = G(x) + ep(x, t)
Let us solve it numerically to obtain X, = X(#,) = X(kAf)

Recall that the perturbation approach operates with phases
defined for the autonomous, unperturbed system

== 0 Obtain phase for each X; we integrate a copy of the

autonomous system, y = G(y), with 1nitial

condition y(0) = X, and integration time N7, N € N

=y for sufficiently large N, Y(NT) is on the limit cycle

Hence, we can easily compute phase of Y(/NT)
and therefore phase @y of X,

(N 1s the only parameter of the algorithm)

34



Computing true phases on the fly 11

== for sufficiently large N, Y(NT') is on the limit cycle

Hence, we can easily compute phase of Y(/NT)
and therefore phase @ of X,
I'—7

I

Y = @(X;) =271

T

35



Numerical phase reduction

Thus, for a forced system: x = G(x) + ep(x,t)
we obtain @, for each X, and numerically ¢;,
Suppose we know the phase of the force,

Natural frequency @ 1s also known

= e can fit the equation @ = @ + O(@, )

Practically: we use Savitzky-Golay smoothing filter for derivation

we use kernel density estimation on an 77 X n grid

27

K(x,y) = exp [i(cosx + sin y)
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Numerical phase reduction: Example I

Rayleigh oscillator X — 4(1 — X°)% + x = € cos(vt)

2

> 0

RO

Strong stability of the limit cycle: phase approximation shall work
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Numerical phase reduction: Example I
Rayleigh oscillator ¥ — 4(1 — x*)x + x = & cos(vt)
Fixed v = (0.8, varied € = 0.01,...,0.55

Coupling functions
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Example 1: how good is the model?

Rest term fk P — @ — Q(Cﬂka '//k)
Quality of the model 6 = sTD(S,)/sTD(®})

Error of the Winfree-form representation

\

<> /\'> A\ <>

A 0.1 E
o—6C—©C—C—0O -
| | | | |

O'OIO 0.1 0.2 0.3 0.4 0.5

Phase equation works very well even for strong coupling!

39



Coupling function: power series representation

Generally, one expects
P=w+eQ +e*0,+0+ ... = o+ O, y)

Since we have computed Q(@, W, €) for many different £
we can fit Q(@, y, €) by a polynomial in &
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il
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7123

Quality of the power series representation
0

10 2 I | I | I | I | I /l\ I E

- 5Q1 o —6—F : S -

0'E 5 o w0 4 g2 E

= 2 P eQy + €70, §

i % 2 3 i

5 ;‘ 0 ng + & Q2 + & Q3 .

10 B =

- D Z

10—3 | | | | | | | | | | | | ]
0 0.1 0.2 0.3 04 0.5 0.6

c

For 3rd-order approximation the error is below 1%

m

7€) = sTD( Q(e) — ) £'0; |/sTD[Q(e)]

=1
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Intermediate summary

Phase approximation works well even for quite strong coupling
when the deviation from the limit cycle 1s large

e =0.55
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Numerical phase reduction: Example 11

Raossler oscillator 1n a periodic state:

X=—y—2
y=x+4 0.34y
z=08+z(x—2)

Weak stability of the limit cycle:
complex multiplicators y = (—8.7 = 12.4i) - 107>

Forced system:

X=—y—2z+ ecos(vi)

y = x4+ 0.34y

z=0.8+z(x —2)
with v =0.5,e=0.05,...,0.7

>

1
0

Bja=:
L2
3
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Numerical phase reduction: Example 11

unperturbed limit cycle

Forced system:

X =—y—z+ ecos(ur)
y = x + 0.34y
z=0.84+z(x —2)

with v =0.5,e =0.55

Poincare section
Ul MOD 27T = CONST

44



Error of fit—>©0.4-

Example I1:
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Example 11: coupling functions

e=0.5
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When the technique fails?
1. If coupling 1s so strong that the system gets locked to

the force; the inference via fit does not work anymore
(this happened 1n the first example)

2. If the torus becomes too “thick” and trajectories start to
cross “wrong 1sochrones (second example)

3. If strong forcing destroys smooth attractive torus (see
Afraimovich, Shilnikov 1983)
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Conclusions

Phase description works for quite strong coupling, but
- coupling function 1s amplitude- and frequency dependent

- description 1n terms of phase response curve generally fails

Phase dynamics equations can be inferred numerically

Chaos BRIEF COMMUNICATION scitation.org/journal/cha
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