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Old stuff... Typical “chimera-like” spatiotemporal patterns arising in a Coupled Map
Lattice model of rheological chaos in sheared nematic liquid crystals

S M Kamil, G I Menon & SS Chaos, v. 20 (2010) 043123.1-14;
S M Kamil, SS & G I Menon Physical Review E, v 78 (2008) 011706
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Plan of my talk :

Not to present our old results of such “chimera-like” states!

Rather, I will present some new results that may be of relevance to
current practitioners of research on “Chimera States”!

What’s in a name... A chimera by any other name is still

symmetry-breaking...
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Outline of the Talk

◮ Chimera States in Star Network: Symmetry-Breaking in
Dynamically Identical Entities

Global Stability of Chimeras : an issue that has direct
bearing on the observability of such states

◮ Environment Induced Symmetry-Breaking of the Basin
Stability of the Oscillation-Death State

◮ Emergent Symmetry in Spatiotemporal Patterns Aided by
Dissimilarity in the Coupled Dynamical Entities
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◮ Chimera states have been reported primarily in networks that
have a regular ring topology, where oscillators are coupled in a
non-local or global fashion

◮ In this work we will show how chimera states also emerge in
oscillator networks with a star topology

◮ This configuration arises extensively in computer networks,
where every node connects to a central computer, and the
central computer act as a server and the peripheral devices
act as clients

◮ Further, a star-like structure is a primary motif in scale-free
networks, which have been reported to arise in wide-ranging
phenomena.

◮ One can also interpret this system as a set of uncoupled
oscillators connected to a common drive.
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◮ We will show how the symmetry of the end-nodes, which are
indistinguishable in terms of the coupling environment and
dynamical equations, is broken and co-existing groups with
different dynamical behaviour emerge.

◮ We will demonstrate the extensive existence of chimeras in
the end-nodes of the star network through global stability
measures, and show that large parameter regimes of coupling
strengths typically yield a chimera state.

◮ We also confirm the widespread existence of robust chimera
states in analog circuit experiments.

C. Meena, K. Murali, SS, International Journal of Bifurcation and Chaos (2016)
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Star Networks of Chaotic Oscillators

Consider the dynamics of a star network of N identical nonlinear
oscillator systems.

◮ In such networks there is one central hub node (labelled by
site index i = 1) and N − 1 environmentally identical
peripheral end-nodes connected to the central node (labelled
by node index i = 2, . . .N).

◮ The focus of this study is the dynamical patterns arising in
the N − 1 indistinguishable end-nodes of this network.
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In order to establish the generality of our results, we consider two
prototypical chaotic systems (Rössler system and Lorenz) at the
nodes, and three different coupling forms.

First, we consider standard diffusive coupling through similar
variables, given by:

ẋi = fx(xi , yi , zi) +

N∑

j=1

Kij(xj − xi) (1)

ẏi = fy (xi , yi , zi)

żi = fz(xi , yi , zi)

Here coupling matrix element for central node i = 1 is K1j = k/2
when j 6= 1, and for the end-nodes i = 2, . . .N, Ki1 = k/2 and
zero otherwise. The coupling strength is given by k .
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Then we consider the Conjugate Coupling given as:

ẋi = fx(xi , yi , zi) +

N∑

j=1

Kij(yj − xi) (2)

ẏi = fy (xi , yi , zi)

żi = fz(xi , yi , zi)
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Lastly, we also consider a Mean-Field Coupling, where the
dynamics of the central node is given by:

ẋ1 = fx(x1, y1, z1) +
k

2
(xm − x1) (3)

ẏ1 = fy (x1, y1, z1)

ż1 = fz(x1, y1, z1)

where xm = 1
N−1

∑
j=2,...N xj is the mean field of the end-nodes.

The dynamics of the end-nodes i = 2, . . .N is given by:

ẋi = fx(xi , yi , zi ) +
k

2
(x1 − xi) (4)

ẏi = fy (xi , yi , zi )

żi = fz(xi , yi , zi )
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As coupling strength increases, the end-nodes go from a
de-synchronized state to a completely synchronized state,
via a large coupling parameter regime yielding chimera states.
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Representative chimera state in a star network of diffusively coupled Rössler
Oscillators: characterized by the co-existence of synchronized and de-synchronized sets
of end-nodes, and are distinct from the fully synchronized state, the fully
desynchronized state and the synchronized cluster state.

Sudeshna Sinha Chimera States in Star Networks



Phase portraits show that the desynchronized nodes are chaotic
attractors with different geometries, while the synchronized nodes
show periodic behaviour.
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So the symmetry of the end-nodes, that have identical dynamical
equations and coupling environments, is broken to yield a
synchronized periodic group and a desynchronized chaotic group.
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Star network of conjugately coupled Rössler systems

Phase portraits
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(left) Desynchronized set (blue and magenta) and (right) Three distinct Synchronized
Clusters (black, red and blue)
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Dynamical Patterns for Coupled Lorenz systems

Here again we find that as coupling strength increases, the
end-nodes go from a de-synchronized state to a completely
synchronized state, via a large coupling parameter regime yielding
chimera states, where the identical end-nodes split into different
dynamical groups, thereby breaking symmetry.

It is also evident that in addition to different synchronization
properties, the groups also yield different attractor geometries.
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Time evolution and the corresponding phase portrait, for a star network of diffusively
coupled Lorenz systems, yielding a synchronized group (shown in brown) and a
de-synchronized group (shown in blue and magenta)
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Breathing Chimera

Synchronization error of the incoherent group:
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It is clearly evident from the oscillating synchronization error that
the nodes move in and out of synchronization

The occurence of breathing chimera states is more common in the
coupled Lorenz system than in coupled Rössler systems.
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Prevalence of chimera states

◮ In order to quantify the probability of obtaining chimera states
from random initial states we calculate the fraction of initial
conditions leading to co-existing synchronized and
desynchronized states in the end-nodes, in a large sample of
random initial states.

◮ This provides an estimate of the size of the basin of attraction
of the chimera state, and indicates the prevalence of chimeras
in this system.

◮ So this measure is important, as it allows us to gauge the
chance of observing chimeras without fixing special initial
states.
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Global Stability of the Chimera State
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Probability of obtaining chimera states (red), synchronized clusters (magenta), fully
synchronized states (green), and completely de-synchronized states (blue) in star
networks of coupled Lorenz systems, under (a) conjugate coupling and (b) regular
diffusive coupling.
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◮ It is clearly evident that there exists extensive regimes of
coupling parameter space where the probability of obtaining a
chimera state is close to one.

◮ This quantitively establishes the prevalence of chimeras in the
end-nodes of nonlinear oscillators coupled in star
configurations.

◮ Larger networks yield larger basins of attraction for the
chimera state.

◮ Conjugate coupling yields larger parameter bands with high
prevalence of chimera states.
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Experimental Verification of Chimera States

Now we establish the robustness of these chimera states in
experimental situations by demonstrating the occurrence of
chimera states in star networks of coupled nonlinear oscillators,
evolving from generic initial states.

Specifically, we consider a circuit implementation of a chaotic
Rössler-type oscillator at the nodes:

d3x

dt3
= −A

d2x

dt2
−

dx

dt
± (|x | − 1)

Analog simulation circuit of this equation can be carried out with
standard operational amplifiers and diodes.

We then go on to set up 4 diffusively coupled oscillators
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◮ We observe that for low coupling strength the end-nodes show
completely unsynchronized oscillations.

◮ For large coupling strength, as anticipated, the end-nodes
exhibit complete synchronization.

◮ However, for moderate coupling strengths, the 3 identical
end-nodes split into two groups, with two synchronized nodes
and one node not in synchrony, thus exhibiting a chimera-like
state.

◮ Note that we have no control over the initial state in the
experiment, and these states evolve from generic random
initial conditions.
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Experimental phase-portraits of the attractor observed from chaotic Rössler-type
oscillator circuits diffusively coupled in a star network, yielding a chimera-like state
with 2 nodes being synchronized and one node being out of synchrony. Traces display
the (a) synchronized set, and (b) desynchronized node. Here X -axis: 50 mV/div and
Y -axis: 100 mV/div.
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Experimental waveforms of the 3 end-nodes of 4 diffusively coupled chaotic
Rossler-type circuits: (a) waveform of the synchronized set; (b) waveform of the
distinct node, alongside the waveform of the synchronized set, for comparison.
Here X -axis: 2 mS/div and Y -axis: 200 mV/div.
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◮ Further, in order to check the generality of the results, we also
investigated the mean-field type of coupling

◮ Again one finds that for low coupling strengths the end-nodes
are completely unsynchronized, while for high coupling
strengths they are completely synchronized

◮ However, in a large window of moderate coupling strengths
the identical end-nodes exhibit a chimera-like state.

◮ Also, one obtains different geometries of the dynamical state
in the two synchronized and de-synchronized groups
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Circuit simulated phase-portrait of attractors in the xiyi , plane generated from chaotic
chaotic Rössler-type oscillator circuits coupled via mean-field in a star network, for
coupling strengths: (a) k = 0.1 yielding an unsynchronized state, (b) k = 1.0 yielding
a chimera-like state and (c) k = 2.0 yielding a synchronized state.
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Probability of obtaining chimera states (red), synchronized clusters (magenta), fully
synchronized states (green), and completely de-synchronized states (blue) in star
networks of coupled Rössler systems with mean-field type coupling
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◮ In summary, it is clearly evident from our numerical and
experimental investigations that large parameter regimes of
moderate coupling strengths yield chimera states from generic
random initial conditions in this network topology.

◮ So star networks provide a promising class of coupled systems,
in natural or human-engineered contexts, where chimeras are
pervasive.
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Environment induced Symmetry Breaking of the Basin Stability of
the Oscillation-Death State

S.S. Chaurasia, M. Yadav, and Sudeshna Sinha,
Physical Review E 98, 032223, (2018)
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◮ Impact of a common external system, which we call a
common environment, on the Oscillator Death (OD) states of
a group of Stuart-Landau oscillators

◮ The group of oscillators yield a completely symmetric OD
state when uncoupled to the external system, i.e. the two OD
states occur with equal probability

◮ However, remarkably, when coupled to a common external
system the Basin Stability symmetry is significantly broken

◮ This demonstration of an environmental coupling-induced
mechanism for the prevalence of certain OD states in a
system of oscillators, suggests an underlying process for
obtaining certain states preferentially in ensembles of
oscillators with environment-mediated coupling
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◮ Oscillation quenching can give rise to oscillation death:

Oscillators split into two sub-groups, around an unstable fixed
point via pitchfork bifurcations, generating a set of stable
fixed points

◮ Oscillation death is very relevant to biological systems, as this
oscillation quenching mechanism can lead to the emergence of
inhomogeneity in homogeneous medium

◮ So, for instance, OD has been interpreted as a mechanism for
cellular differentiation
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◮ In the context of many real world systems, interactions can
occur through a common medium

◮ For instance, chemical oscillations of catalyst-loaded reactants
have been found in a medium of catalyst-free solution, where
the coupling is through exchange of chemicals with the
surrounding medium

◮ Similarly, in the context of genetic oscillators coupling occurs
by diffusion of chemicals between cells and extracellular
medium

◮ Further, in a collection of circadian oscillators, the
concentration of neurotransmitter released by each cell can
induce collective behaviour

◮ In general, such cases occur due to the common medium,
referred to as a common environment, interacting with the
dynamical systems
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A model system mimicking this scenario consists of N identical
oscillator systems xi , i = 1, . . . ,N coupled through a (possibly
time-varying) environment, denoted by variables u, whose most
general dynamical equations is given as:

ẋi = fx(xi ) + εext g(u)

and
u̇ = fu(u) + εext h(x1, x2, . . . , xn)

Now a variety of models of biochemical oscillators coupled through
an environment are described by equations of this form: So this
framework unifies many specific models of particular systems, and
allows us to obtain some basic general results which potentially
apply to all of them
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Specifically, consider a group of N globally coupled SL oscillators
(xi = (xi , yi)) given by the following evolution equations:

ẋi = (1− x2i − y2i )xi − ωyi + εintra(qx̄ − xi )

ẏi = (1− x2i − y2i )yi + ωxi + εextu (5)

u̇ = −ku + εextȳ

Here the oscillators within the group are coupled via the mean field
x̄ of the x-variable, and εintra reflects the strength of intra-group
coupling.
Additionally, this oscillator group also couples to an external
common environment, denoted by a single-variable u, and εext
reflects the strength of the coupling to the external system.
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◮ In this coupling scheme, q is a control parameter for the
mean-field interaction, describing the influx and consequent
influence of the mean field in the oscillator group

◮ A similar type of coupling mechanism was suggested in the
context of intercell communication of synthetic gene
oscillators via a small autoinducer molecule

◮ As q tends to zero, the effect of the mean-field interaction
decreases, suppressing the oscillations of the coupled systems

◮ The limit q = 0 indicates no interaction between the
oscillators (i.e. they are simply uncoupled oscillators with
self-feedback), while the limit q = 1 maximizes the interaction
with the mean field.

◮ At intermediate values of q the oscillators are driven to
Amplitude Death/Oscillation Death states

◮ So in our system the common external environment provides
an indirect coupling conjoining the different oscillators in the
group, in addition to the direct coupling within the group.
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Here one of the oscillator death states has positive x and negative y (“positive
state”), and the other oscillator death state has and negative x and positive y

(“negative state”)

In the bifurcation diagram, the size of the symbols represent the probability of being in
that state, with the probability estimated by sampling over a large number of initial
states.
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Time series of twenty oscillators in the group (shown in distinct colours), (a) in the
absence of coupling to an external environment and (b) when the group is connected
to the external environment

S S Chaurasia, M Yadav, and S Sinha, Physical Review E, 98, 032223, (2018)
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Basin Stability of the positive Oscillator Death state of coupled
oscillators with respect to coupling strength εext
Groups of oscillators of different sizes N=40, 60, 80, 100, 120 are shown in different

colours
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◮ To check the generality of our results we also consider a
Constant External Drive

◮ We also consider time-varying connections to the common
external environment, with a fraction of oscillator-environment
links switching on and off.
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◮ We found marked breaking of symmetry in the global stability
of Oscillator Death states for the case of coupling to a
constant external drive as well.

◮ When the constant environmental drive is large, the Basin
Stability asymmetry of the OD states is very large, and the
transition between the symmetric and asymmetric state with
increasing oscillator-environment coupling is very sharp.

◮ We also find that the asymmetry induced by environmental
coupling decreases as a power law with increase in fraction of
on-off connections.

◮ The suggests that blinking oscillator-environment links can
restore the symmetry of the OD state
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Basin Stability of the positive Oscillator Death state in the parameter space of
coupling strength εext and constant environment (uc ), with fraction of blinking
oscillators (a) fblink = 0.0, (b) fblink = 0.25, (c) fblink = 0.50, (d) fblink = 1.0
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◮ Thus we have demonstrated that this system displays
symmetry breaking of the Basin Stability of the Oscillator
Death States

◮ This implies that a specific oscillator death state is
preferentially achieved

◮ This state selection leads to asymmetric distribution of OD
states in the ensemble of oscillators, suggesting a natural
mechanism that allows the emergence of a favoured set of
fixed points
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Control of chaotic oscillators to steady states through

coupling to a dissimilar external chaotic system

Schematic of a group of N oscillators coupled to an external
oscillator
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(b)

Bifurcation diagrams, with respect to the coupling strength ε, of one representative
oscillator in the group (left) and an external oscillator (right). Here the group consists
of chaotic Rössler oscillators and the external oscillator is: (a) a chaotic Rössler
oscillator with different parameters and (b) a chaotic Lorenz system
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Dependence of the fraction of initial states BSfixed attracted to the fixed point state,
on the coupling strength ε, for a group of chaotic Rössler oscillators coupled to a
common external chaotic Lorenz system with different parameter values

Note that there is no dependence of BSfixed on the number of oscillators in the group
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Phase portrait of a representative Rössler oscillator from the group,
coupled to a common external hyper-chaotic oscillator, at different
coupling strengths ε.
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We also investigated the behaviour of a hierarchical network of
chaotic oscillators, where at the zeroth level of the hierarchy we
have one chaotic external system that is dissimilar to the rest of
the oscillators in the network

Remarkably, this external system managed to successfully steer the
chaotic oscillators at all levels of the hierarchy onto steady states,
at sufficiently high coupling strengths

So this suggests a potent method to efficiently control chaotic
dynamics in a hierarchical network to stable steady states, by
simply coupling to an external chaotic system.

S S Chaurasia and Sudeshna Sinha, Europhysics Letters (2019)
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Some old results... Loss of Symmetry in Links leads to more
Spatiotemporal Regularity

Regular Ring vs. Random Network

Sudeshna Sinha, Physical Review E, v. 66 (2002) 016209
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Outlook... and Outreach...

◮ Chimera States in Star Network

◮ Global Stability of Chimeras: an issue that has direct bearing
on the observability of such states

◮ Experimental demonstration of robust chinera states

◮ Environment Induced Symmetry-Breaking of the Basin
Stability of the Oscillation-Death State

◮ Suggests an underlying process for obtaining certain states
preferentially in ensembles of oscillators with
environment-mediated coupling

◮ Emergent Symmetry in Spatiotemporal Patterns Aided by
Dissimilarity in the Coupled Dynamical Entities
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◮ C. Meena, K. Murali, Sudeshna Sinha
Chimera states in Star Networks

International Journal of Bifurcation and Chaos, 26 (2016)
1630023

◮ S.S. Chaurasia, M. Yadav, and Sudeshna Sinha
Environment induced Symmetry Breaking of the

Oscillation-Death State

Physical Review E, 98, 032223, (2018)

◮ S.S. Chaurasia and Sudeshna Sinha
Suppression of chaos through coupling to an external chaotic

system

Nonlinear Dynamics, 87 (2017) 159-167

◮ S S Chaurasia and Sudeshna Sinha
Control of Hierarchical Networks by Coupling to an External

Chaotic System

Europhysics Letters, 125, 50006 (2019)
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