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Telluric HDO!
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๏ First consider the the vibration of a non-rotating molecule: 

becomes: 

๏ Vn(R) is in general a complex function that depends on the 
electronic wavefunction, but for small displacements from 
Re:
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๏ We can choose the first term to be zero 

๏ The second term is zero 

๏ We can define the “bond force constant”: 

๏ So: 

(the parabolic potential used earlier)
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Vibrational motion

๏ Within this approximation: 

๏ Make the substitution: 

is the displacement of the nuclei from equilibrium to get: 

๏ Harmonic motion with frequency  
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Vibrational motion

๏ Further transformation to “natural units”: 

๏ The energy levels are quantized in terms of a quantum 
number, v = 0, 1, 2, …  

๏ The wavefunctions have the form: 

where Nv is a normalization constant and Hv(q) is a Hermite 
polynomial.
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The Hermite polynomials

๏ Starting with: 

define                   and rearrange:  

๏ For C = 1 (i.e.                 ) the solution is 

๏ This is the ground state (and E is non-zero) 

๏ The more general ansatz is                               where Hv(q) is 
some finite polynomial which must satisfy  
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The Hermite polynomials

๏ This equation is well known and its solutions are the 
Hermite polynomials, defined by 

where v = 0, 1, 2, …  

๏ Hv(q) are orthogonal with respect to the weight function 

๏ And obey the recursion relation: 



The Hermite polynomials



Harmonic oscillator wavefunctions
ψ(q)



Harmonic oscillator probabilities
|ψ(q) |2
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Harmonic vibrational transitions

๏ From the recursion relation 

๏ The “selection rules” are: 

๏ Homonuclear diatomic molecules (e.g. H2) do not have an 
electric-dipole allowed vibrational spectrum

“gross” selection rule



Rovibrational transitions

๏ Further selection rule on J: ΔJ = ±1 

๏ P (ΔJ = -1) and R (ΔJ = +1) branches: 

๏ e.g. CO fundamental band:

P R

v = 1 ← 0



Rovibrational transitions
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Anharmonic vibrations

๏ The harmonic potential deviates from the real interatomic 
potential at higher energies … 

๏ … and does not allow for dissociation 

๏ A better approximation is provided by the Morse potential: 

๏ Morse term values in terms of constants ωe and ωexe (which 
can be related to De, a):



The Morse potential

๏ 7Li1H:



Vibration-rotation interaction

๏ Real molecules vibrate and rotate at the same time 

๏ When a molecule vibrates its moment of inertia, I = μR2, 
changes
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๏ The vibrational frequency is typically 10 – 100× faster than 
the rotational frequency 

๏ To a first approximation we may consider the rotational 
energy as a time-average over a vibrational period:

๏ Hence:



Vibration-rotation interaction

αe > 0



Vibration-rotation interaction

๏ Term values:



Vibration-rotation interaction

๏ Term values: 

๏ Even ignoring centrifugal distortion:

B1 < B0

P R
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Vibration-rotation interaction

๏ Rewritten for the two branches (P: ΔJ = -1, R: ΔJ = +1) 

⇒

Linear least-squares fit to the  
“Fortrat parabola”: 

B0 = 19.84424 cm-1

B1 = 19.12415 cm-1 
Be = 20.20428 cm-1

αe =   0.72009 cm-1
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Hot bands and overtones

๏ Anharmonicity relaxes the selection rule Δv = ±1, allowing 
overtone bands with Δv = ±2, ±3, … 

๏ At low temperature, for most diatomic molecules, only the 
v = 0 level is appreciably occupied (                                   ).

๏ As T increases, transitions originating on v = 1 and higher 
appear.

⇒ e−Ev/kBT ≪ 1



Rovibrational spectrum of CO (800 K)

๏ CO fundamental band (v = 1 ← 0), and hot band (v = 2 ← 0)
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Rovibrational spectrum of CO (800 K)

๏ CO second overtone band (v = 3 ← 0), and hot band (v = 4 ← 1)

band head
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Rotational spectroscopy of polyatomics 

๏ The moment of inertia of any three-dimensional object can 
be described with a component about each of its three 
principal axes. Define: 

๏ For a linear molecule (e.g. HCl, CO2) has:  

๏ An spherical top (e.g. CH4, SF6) has: 

๏ An asymmetric top (e.g. H2O) has: 

๏ We will briefly consider the remaining case: the symmetric 
top.

Ia ≤ Ib ≤ Ic

Ia = 0, I ≡ Ib = Ic

Ia = Ib = Ic

Ia ≠ Ib ≠ Ic



Symmetric top molecules

๏ There are two cases: 

๏ Prolate (rugby ball-shaped): 

๏ Oblate (flying saucer-shaped):

Ia < Ib = Ic

Ia = Ib < Ic
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Symmetric top molecules

๏ The general rotational kinetic energy operator: 

๏ Rewrite in terms of the total rotational angular momentum 
operator,                           : 

๏ This Hamiltonian is diagonal in the basis           : 

๏ J = 0, 1, 2, …: total angular momentum quantum number 

๏ K = -J, -J+1, …, J: projection of J along the symmetry axis 

̂J 2 = ̂J 2
a + ̂J 2

b + ̂J 2
c

|J, K⟩
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Symmetric top molecules

๏ Rotational term values for a prolate symmetric top: 

where: 

(For an oblate symmetric top, replace Ia with Ic, A with C). 

๏ But… the selection rules are ΔJ = ±1 and ΔK = 0 (no change 
of dipole moment as the molecule rotates about its 
symmetry axis), so:  

๏ Unless we consider centrifugal distortion:



Rotational spectrum of phosphine

๏ Phosphine (PH3) is an oblate symmetric top



Rotational spectrum of phosphine

๏ The pure rotational transition                 in PH3:J = 9 ← 8



Rotational spectrum of phosphine

๏ Fit the spectroscopic parameters B, DJK, DJ

In this case, we get: 

B = 4.45236169 cm-1 
DJK = -0.00016877 cm-1

DJ = 0.00012956 cm-1
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Vibrational spectroscopy: polyatomics

๏ A molecule with more than two atoms will have several 
vibrational motions available to it 

๏ For small vibrational amplitudes, all possible motions can be 
composed as a linear combination of normal vibrational 
modes for which the nuclei all move through their 
equilibrium positions at the same time. 

๏ Non-linear molecules: Nvib = 3N - 6 normal modes 

๏ Linear molecules: Nvib = 3N - 5 normal modes 

๏ A normal mode may be degenerate (dk)



Vibrational spectroscopy: polyatomics

๏ Example: H2O normal modes



Vibrational spectroscopy: polyatomics

๏ Example: CO2 normal modes – parallel and perpendicular

⊥

∥

∥

Σ+
g

Σ+
u

Πu



Vibrational spectroscopy: polyatomics

๏ Example: CO2 normal modes – parallel and perpendicular

⊥

∥

∥

Only modes with a change in dipole moment on vibration are 
allowed (“IR-active”) (electric dipole gross selection rule)

Σ+
g

Σ+
u

Πu
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๏ Selection rules 
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Vibrations of linear polyatomics

๏ Selection rules 

๏ Parallel vibrations: ΔJ = ±1 

๏ Perpendicular vibrations: ΔJ = 0, ±1

๏ Vibrational angular momentum:
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Vibrational spectroscopy: polyatomics

๏ Example: CO2 vibrational energy levels 

๏ The notation used:                , (v1vl
2v3) l = − v2, − v2 + 2,⋯, v2 − 2,v2

CO2 N2

v = 0

v = 1

v = 2



Vibrations of linear polyatomics

๏ The                               band (P, Q and R branches)(0110) − (0000)



Vibrations of linear polyatomics

๏ The                               band (P, Q and R branches)(0001) − (0000)


