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Motivation and Data origin

4FGL Fermi-catalog
circa 5000 point-like sources, out of which ~ 1500 are unidentified (unID)

Can we classify those unIDs alla supervised learning ?

G A

Spectrum of a particular blazar

3FGL J1555.7+1111 (PG 1553+113)
‘ Log-parabola ‘ }
104} ] AN E —(a+pBlog(E/Eyp))
- _No [ =
dg " (Eb) o
peak
107 . .
Available data contains 3 known classes:
| | | pulsars, quasars, blazars
108 107 iy 10°
Emergy [MeW]
and 4 features: Epeak, 8; Odet, Ocury
significance of improvement in fitting
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What if some of the unIDs are better classified as dark matter?

Include the dark matter into the s-plane!
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Data visualization
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Data visualization

credits to Javier Coronado-Blazquez
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- unID’s seem to be distributed similarly to the ID’s
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Machine Learning procedure
Step #1



Standard classification without input uncertainties

warm up:
want to know what the simplest thing to do can give you

Considered classifiers:
- Naive Bayes

- Logistic regression
- Random Forest

work in progress, but conceptually trivial...



Next steps:
- search for an out-of-the-box classifier dealing with noisy inputs x
- search for a paper addressing the classification with noisy inputs x

- call your ML-expert colleagues, ask them for references! x

- do it ourselves!! J



Machine Learning procedure
Step # 2:
incorporating input uncertainties



Bayesian classification with parametric models

Dirain = {Xiayi f;il Y; = 1,2, ,K

ik : one-hot-encoding of UY;
Parametric models assume a specific form for the Likelihood of data

( N K )
— log p(Drain |W) =|— Z Z ti log p(Cr|xi, W) Cross-entropy
1=1 k=1
J
p(Cklxi, w) = op( f(xi, W) ) (softmax function)

and assume a specific form for the function f(X;, W) (e.g. a neural network)

In Bayesian approach, we build the predictive distribution for a new point X,

p(y*|X*7DtI‘ain> — /p(y*‘x*aw)p(w‘ptrain)dw




Gaussian Process

- Rasmussen & Williams, 2006

GP approach is non-parametric: no predefined form for f(x;, w)

Instead you have a Gaussian distribution over functions (in case of regression)




Classification with noisy input using Gaussian Processes

2)trabin — {Xi—l_eiayi rfil Yi = 1727“'7K
- As usual: introduce one output latent variable f ,L-k per point i per class k,
- NEW: introduce one input latent variable X; per point i
X; = X; + €;
The predictive distribution for a class ¥« at a test point X,

p(y*‘xﬂﬂ Dtrain) - /p(y*‘f*)p(f*|i*a Dtrain)p(i*‘x*) df*di*

usual term _ _
Gaussian posterior

(new term)

p(f4|Xs, Dirain) = / dFdX p(f.|%., F)p(F|X,y)p(X|X,y)

Costly: - Sparse GP PIX ~ p(y|F, X)p(FDZ)
3 2 p(FX,y) =
O(N?) O(M?N) p(y)
intractable M) Variational Non-Gaussian Likelihood

Inference



Sparse Gaussian Process

- here inspired in Titsias (2009)

p(Fu|Zs, Drain) = / AFdX p(f.|%., F)p(FX, y)p(X[X, y)

involves inverting an NxN matrix, cost O (N 3)

Idea is to make inference on a smaller M < N set of function points,
which represent approximately the entire posterior over the N function points.

U: dm=Mx K

— /(]F(]X(ZU p(f.|%., F, U)p(F|U, X, y)p(UX,y)p(X|X,y)

If U were sufficient statistics for f. , we were left with
p(£4]Xs; Dirain) ~ / dXdU p(£.|%,, U)p(UX,y)p(X|X,y)
Cost: O(NM?)
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Variational Inference
- Jordan, Ghahramani, Jaakkola & Saul, 1999

Idea is approximate the exact posterior distribution by an easier one (e.g. Gaussians)
according to the variational principle

p(F, X, U|X,y) = p(UF,X)p(F,X|X,y) = p(F|U, X)p(U)p(y|F)p(X|X,y)
. B )

p(y
|

~ ~

q(F,X,U) = p(F‘U, X)Q(U)Q(X)

Minimize KI, [q(F,X, U)||p(F,X,U|X,y)] w.rt. ¢(F,X,U)

Kullback-Leibler divergence:

KM%@W@@ﬂz/ﬁzaam(q®>)zo
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Likelihood of the model 12

Common form D(Dirain|W) = H H o (f (X, w ) ik

in parametric models: i=1 k=1

“generalized Bernoulli” (the -log of which is the cross entropy)

O'k(f(iz, W)) — p(yz|f(>~cz, W)) e.g. if 3 classes: 0.05 0.15 } “mi.sclissification
yi=wi=2)y=3)

Instead here =)  Misclassification noise included in the prior for [ (5(2)
mm)  Labelling noise (with probability e) also included:

Labelling rule: y; = argmax fr(X;)

Likelihood for label at point i : p(yilfi) = H O(fy, (Xi) — fr(Xi))
(noiseless) k#y.
4 h
pyilfs) = (L—e) || O(fy, (&) — fu(%s)) + Ke_ T |1 1] et i) — fr(%))

D. Hernandez-Lobato, J.M. Hernandez-Lobato & P. Dupont, 2011



Results

(python + TensorFlow)



- Found no published model against which to compare! 2
- we compare with a standard GP classif. without noise 1§,

- we modify an existing GP noise model for regression
McHutchon & Rasmussen, 2011

Results on toy data

Generate a set (~100) of synthetic datasets
to evaluate average performance

ex. of dataset

Noise free inputs

Noisy inputs

Input noise level

Input noise level

Input noise level

0.25 0.5
—InLiest | Err. rate | —InLtest | Err. rate | —InLtest | Err. rate
Noiseless model 0.76 0.113 1.14 0.164 1.54 0.218
Rasmussen-like 0.321 0.109 0.53 0.158 0.77 0.209
This work 0.259 0.108 0.37 0.158 0.50 0.210
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Conclusions/work in progress

- Unidentified point-like sources can be classified among predefined known classes
(including the potential dark matter class)

- Interestingly, including the dark matter class into the well-known beta-plane
for point-like sources results in a reasonably good separability

- Only non-straightforward issue with this problem:
inputs come with their own error bars
surprisingly not yet explicitly addressed in the context of ML classification!

- A warm-up classification exercise w/o error bars is being conducted

- Error bars are incorporated in a Gaussian Process model for multiclass classification,
by treating the input as a noisy realization of extra latent variables to be learned.

- Very satisfactory preliminary results with synthetic data

- Time to apply it to real Fermi-LAT data!

Thank you!



bckp



Classification with error bars in the input
(parametric approach)

Suppose you have data {x; + Ax;; ti},‘z\il

dim(xi) — D t, — {tih ---,tiK} eg. If X; inclass2 K — 3
“one-hot-encoding” t; = {0,1,0}
Are noisy samples from unknown means X; assume N(XZ ‘ii, Axi)

Then the (- log) joint Likelihood of data can be written as

N
—log p(X, T|X W) Zthk log p(Ci|x;, W Zlog/\/(xz"iiaAXi)

1=1 k=1

e.g. a linear model, or a NN model
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