

(CTP)

May 27th 2019

Top quark physics with the ATLAS detector

Michele Pinamonti

(INFN Trieste & University of Udine) on behalf of the ATLAS Collaboration

> Interpreting the LHC Run 2 Data and Beyond ICTP, Trieste (Italy)

The top quark

- **Heaviest** elementary particle:
 - same mass scale as *W*, *Z* and Higgs bosons
 - connection to EW Symmetry Breaking?
 - Yukawa coupling $y_t \sim 1$
- **Copious production** at the LHC:
 - **strong** pair production: *tt*
 - EW single production: t-, s- and *Wt*-channels
 - **associated** production:
 tt+y/W/Z/H, tt+bb, tt+tt...

- Decays before hadronising:
 - ~ exclusively to *Wb*
 - \Rightarrow clean **source** of *W* and *b*

h

LHC and ATLAS

- LHC: 27 km pp CERN, Geneva (CH)
 - **Run 1**: $\sqrt{s} = 7 8 \text{ TeV}, 2010 2012, 30 \text{ fb}^{-1}$
 - **Run 2**: $\sqrt{s} = 13 \text{ TeV}, 2015 2018, 150 \text{ fb}^{-1}$
 - **Run 3**: $\sqrt{s} = 14 \text{ TeV}, 2021 2023, ~150 \text{ fb}^{-1}$
 - **HL-LHC**: $\sqrt{s} = 14 \text{ TeV}, 2026 ?, ~3 \text{ ab}^{-1}$

- ATLAS: one of the 2 *general-purpose* LHC detectors:
 - \circ -100 m, 40 tons, ~ 4 π coverage^{*}
 - \circ made of sub-detectors: (*: tracking $|\eta| <$
 - inner detector 2.5)
 - calorimeters (EM and Hadronic)
 - muon spectrometer
 - excellent measurement of:
 - electrons
 - muons
 - photons
 - hadronic jets

Top events and final states: experimental signatures

- $t \rightarrow Wb, W \rightarrow \ell v / qq'$ \Rightarrow top events have **final states** with **leptons** (e, μ, τ), **missing energy**, *b***-quark-jets**, "**light**" jets
 - *e* and *µ* identified and measured **precisely** in ATLAS
 - jets larger uncertainties (experimental & theoretical)
 - *b*-jets identified through
 b-tagging algorithms
 - *b*-tagging calibrated with top events!
- <u>Typical selection requirements</u>:
 - \circ 0 2 e or μ (t^{had} harder to identify), $p_{\rm T}$ > 25 GeV, $|\eta|$ < 2.5
 - 2 6 jets, p_{T} > 25 GeV, $|\eta|$ < 2.5, ≥ 1 *b*-tagged
 - eventually minimum E_{T}^{miss} , $m_{\ell\ell}$ veto around Z mass (depending on channel)

⇒ excellent rejection of non-top events (background)

ATLAS Papers on Top Physics in the last year

	Short Title	Journal reference	Date	√s (TeV)	Ľ.	Links
\rightarrow	Measurement of the top-quark mass using ttbar+1jet events at 8 TeV NEW	Submitted to JHEP	06-MAY-19	8	20.3 fb ⁻¹	Documents 1905.02302 Inspire
$\mathbf{>}$	Spin correlation measurement at 13 TeV	Submitted to EPJC	18-MAR-19	13	36 fb ⁻¹	Documents 1903.07570 Inspire
N	Measurement of the jet shapes at 13 TeV	Submitted to JHEP	07-MAR-19	13	36 fb ⁻¹	Documents 1903.02942 Inspire
\rightarrow	ATLAS+CMS combination of Run 1 single top measurements and extraction of Vtb	Submitted to JHEP	18-FEB-19	8	20 fb ⁻¹	Documents 1902.07158 Inspire
\rightarrow	Measurement of ttV in multilepton final states using 36.5fb-1 at 13 TeV	Phys. Rev. D 99 (2019) 072009	11-JAN-19	13	36 fb ⁻¹	Documents 1901.03584 Inspire
	Search for flavor-changing neutral current t to Hq with H->b-bbar and tautau at 13 TeV	Submitted to JHEP	30-DEC-18	13	36 fb ⁻¹	Documents 1812.11568 Inspire
\rightarrow	Measurement of the ttbar+gamma cross section at 13 TeV	Eur. Phys. J. C 79 (2019) 382	04-DEC-18	13	36 fb ⁻¹	Documents 1812.01697 Inspire
$\langle \rangle$	Measurement of the ttbb cross section at 13 TeV	JHEP 04 (2019) 046	29-NOV-18	13	36 fb ⁻¹	Documents 1811.12113 Inspire HepData Internal
\sum	4 top quark search with 1 or 2 leptons	Phys. Rev. D 99 (2019) 052009	06-NOV-18	13	36 fb ⁻¹	Documents 1811.02305 Inspire Briefing Internal
$\overline{}$	Measurement of the top quark mass in the lepton+jets channel at 8 TeV	Eur. Phys. J. C79 (2019) 290	03-OCT-18	8	20.2 fb ⁻¹	Documents 1810.01772 Inspire
\mathbf{i}	Same-sign dilepton plus b-jet search	JHEP 12 (2018) 039	31-JUL-18	13	36.1 fb ⁻¹	Documents 1807.11883 Inspire HepData Internal
\mathbf{i}	Quantum Interference Between Single and Doubly Resonant Top Quark Production	Phys. Rev. Lett. 121 (2018) 152002	12-JUN-18	13	36 fb ⁻¹	Documents 1806.04667 Inspire

• Will not just make a list of all ATLAS results:

ATLAS

- some **new and fresh results** shown
- few selected topics to trigger **discussion**

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults Top Quark Physics

ATLAS EXPERIMENT — PUBLIC RESULTS

Total cross-sections

- **Excellent agreement** between theory and experiments
- Experimental precision **challenging** best theory prediction uncertainties
- **Comparison** exp. vs theory can be used for:
 - **limits** on New Physics within EFT formalism
 - **indirect measurements** of $a_{s'} m_t$...

- Particle Data Group, Phys. Rev. D 98, 030001 Indirect determination: $|V_{tb}| = 0.999105 \pm 0.000032$
- Use single-top x-sec measurements from LHC @7 and 8 TeV to extract "direct" measurement
- Combination of ATLAS+CMS, all channels used
- Largest **uncertainties** from **theory**

Combined $ f_{LV}V_{tb} ^2$	1.05		
Uncortainty catagory	Uncertainty		
Uncertainty category	[%]	$\Delta f_{\rm LV} V_{tb} ^2$	
Data statistical	1.8	0.02	
Simulation statistical	0.9	0.01	
Integrated luminosity	1.3	0.01	
Theory modelling	4.5	0.05	
Background normalisation	1.3	0.01	
Jets	2.6	0.03	
Detector modelling	1.6	0.02	
Top-quark mass	0.7	0.01	
Theoretical cross-section	4.3	0.04	
Total syst. unc. (excl. lumi.)	7.1	0.07	
Total syst. unc. (incl. lumi.)	7.2	0.08	
Total uncertainty	7.4	0.08	

 $|f_{\rm LV}V_{tb}| = \sqrt{\frac{\sigma_{\rm meas.}}{\sigma_{\rm theo}}} (V_{tb}=1)$

Assumed: $|V_{td}|, |V_{ts}| \ll |V_{tb}|$

Tevatron combination from single top: $|f_{\rm LV}V_{tb}| = 1.02^{+0.06}_{-0.05}$

 $|f_{\text{LV}}V_{tb}| = 1.02 \pm 0.04 \text{ (meas.)} \pm 0.02 \text{ (theo.)}$

 $|f_{\rm LV}V_{tb}|^2 = 1.05 \pm 0.02 \text{ (stat.)} \pm 0.06 \text{ (syst.)} \pm 0.01 \text{ (lumi.)} \pm 0.04 \text{ (theo.)} = 1.05 \pm 0.08.$

Differential cross-sections

- Going **beyond total** cross-sections, ATLAS measuring *tt* cross-section vs. many kinematic variables
 - unfolded to **parton-level**, in **total phase-space** 0
 - unfolded to **particle-level**, within certain **fiducial phase-space** 0
 - **normalised** distributions 0
- **Comparison with different theory predictions:**
 - **fixed order** calculations (parton-level, eg. NNLO-QCD+NLO-EW) 0
 - MC predictions (both parton and particle-level, various **NLO+PS**) Ο
- Why do we need them?
 - powerful tests of QCD and EW predictions 0
 - useful to tune MC generators Ο
 - used to extract measurements (PDFs, m_{t} ...) Ο

Some ATLAS analyses in Run1 and 2:

- tt 1 ℓ @8 TeV (Eur. Phys. J. C76 (2016) 538
- tt 2 { @8 TeV > Eur. Phys. J. C 77 (2017) 804
- tt 1ł @13 TeV > JHEP 11 (2017) 191
- tt 2ℓ @13 TeV ► Eur. Phys. J. C77 (2017) 292 tt 0ℓ @13 TeV 012003
- Run 2 results still based on limited stat.

Differential cross-sections

- Analysis setup:
 - \circ typical *tt* selection cuts \rightarrow low background
 - reconstruct tops from decay products,

* Iterative Bayesian Unfolding used

(D'Agostini et al. **arXiv:1010.0632**):

- *regularised*, i.e. statistical fluctuation amplification reduced
- **unbiased** result thanks to **iterations**
- with simple algorithms easily reproducible by theorists ("pseudo-top" reconstruction)
- **unfold*** background-subtracted data distributions to parton / particle level distributions

Highlights on differential x-sections

- Many distributions unfolded in Run 1:
 - parton and particle-level
 - comparison with fixed order calculations (NNLO-QCD) made agreement better

1.8

0.1

NLO/LO

- e.g. in top p_{T} : **NLO+PS predicting too soft spectra**
- sensitivity to different **PDFs**

• <u>Run 2:</u>

- still **limited number** of results (e.g. no parton level)
- more energy ⇒ more statistics in tail of distributions
- **"top-***p*_T **issue"** larger than in Run 1:

NNLO-QCD + NLO-EW predictions now available: Czakon, Mitov et al. > JHEP (2017) 2017/10: 186

 \rightarrow "in the right direction", but need to wait for more results to declare issue as solved

tW / tt interference

- Interesting recent measurement:
 - unfold a distribution sensitive \bigcirc to **interference** between *tt* **and** *tW*

 $m_{b\ell}^{\text{minimax}} \equiv \min\{\max(m_{b_1\ell_1}, m_{b_2\ell_2}), \max(m_{b_1\ell_2}, m_{b_2\ell_1})\}$

- results from "diagram subtraction" and 0
- unfolded data 0 \rightarrow constraints for future development of tt+tWb process (e.g. all-inclusive $pp \rightarrow WWbb$)

The Top Quark Mass

- $m_t + m_w + m_H$ measurements \rightarrow over-constraints to SM fits
 - direct measurements can be compared to indirect results to probe validity of SM
 - m_t important to determine SM vacuum stability

Methods to Measure the Top Mass

Direct "*m*_t" measurements:

reco = invariant mass of jets from top decay

extraction from total or partial invariant mass of top decay products ⇒ "Standard Method"

- data compared with MC simulation with different input values of m_t in MC Ο
- relying on jets, parton showers (LO), non-perturbative effects Ο \Rightarrow measuring " m_{t}^{MC} "

(still controversial arguments, see e.g. **CERN-TH-2017-266**)

- **Indirect** measurements of m_t from cross-sections (inclusive or differential)
 - in a well-defined renormalization scheme, e.g. m_{t}^{pole} (corresponding to definition Ο

of free particle mass)

 $\sigma^{\text{theor.}}(\alpha_{s} \mid m_{t'} \text{ PDF, } \mu_{F'} \mu_{R'} \dots) \text{ vs } \sigma^{\text{meas.}}$ **m**_t = parameter in the SM

"O(1 GeV) difference" between m_t^{MC} and m_t^{pole}

Both types: precision measurements

presented measurements based on LHC Run1 pp-data

- **KLFitter**^{*} to reconstruct *tt* system (for jet-parton assignment and m_{top}^{reco}) *: kinematical likelihood fit in each event
- m_W^{reco} and R_{bq}^{reco} use chosen jet permutation, but with original jet 4-momenta (to retain the maximum sensitivity to *JES* and *b-JES*)

bJSF = 0.96

bJSF = 1.00

bJSF = 1.04

2.5

R

Direct *m*, measurement, *tt* 1*l*

- **Optimization**:
 - cut on **BDT** built to remove wrongly assigned events \Rightarrow reduce systematics
 - BDT trained with 13 variables 0 (best ones: KLFitter likelihood of best permutation and ΔR_{aa})

130

150

140

160

170

ATLAS

1200 vs=8 TeV, 20.2 fb⁻¹

Events / GeV

1000

800

600

400

ℓ+jets@8TeV comb.@7+8TeV dilep.@8TeV 0.39

 0.13 ± 0.11

 0.16 ± 0.17

 0.15 ± 0.10

 0.08 ± 0.11

 0.08 ± 0.15

 0.19 ± 0.15

 0.09 ± 0.00

 0.08 ± 0.00

0.41

 0.05 ± 0.07

 0.09 ± 0.15

 0.22 ± 0.09

 0.23 ± 0.07

 0.10 ± 0.14

 0.03 ± 0.14

 0.05 ± 0.00

 0.03 ± 0.00

0.27

0.06

0.14

0.07

0.07

0.05

0.08

0.07

0.03

Direct *m*, combination

- 7 TeV + 8 TeV, ℓ+jets + dilepton:
 - successive combination from 0 most sensitive to less sensitive

Statistics

Method

Hadronisation

Underlying event

Colour reconnection

Signal Monte Carlo generator

Parton distribution function

Background normalisation

Initial- and final-state OCD radiation

Reduction of uncertainties thanks to **complementarity** and **anti-correlations**

Indirect *m*_t measurement from *tt* +jet • arXiv:1905.02302

• m_t^{pole} extractd from **normalized differential cross-section** of inverse of *tt***+1j invariant mass**:

$$\mathcal{R}(m_t^{\text{pole}}, \rho_s) = \frac{1}{\sigma_{t\bar{t}+1\text{-jet}}} \frac{\mathrm{d}\sigma_{t\bar{t}+1\text{-jet}}}{\mathrm{d}\rho_s} (m_t^{\text{pole}}, \rho_s).$$

- sensitive because amount of gluon radiation depends on m_t , with large effects in phase-space region near threshold
- <u>8 TeV data-set, *tt* </u>2+jets selection:
 - *tt* system reconstructed, additional leading jet required p_T > 50 GeV
 - parton&particle-level **unfolded distribution** compared to NLO+PS *tt* +1jet calculation vs m_t^{pole}

 $m_t^{\text{pole}} = 171.1 \pm 0.4 \text{ (stat)} \pm 0.9 \text{ (syst)} {}^{+0.7}_{-0.3} \text{ (theo) GeV} + {}^{+1.2}_{-1.1} \text{ GeV}$

- dominant systematic uncertainties:
 - JES and Theory (simulation & scales)
- Also value in running mass scheme derived:

 $m_t(m_t) = 162.9 \pm 0.5 \text{ (stat)} \pm 1.0 \text{ (syst)} {}^{+2.1}_{-1.2} \text{ (theo) GeV}$

$$\rho_s = \frac{2m_0^*}{\sqrt{s_{t\bar{t}+1-jet}}}$$
*: $m_0 = 170 \text{ GeV}$

tt Spin Correlation

- **Spins of tops** in *tt* events predicted to be **correlated**
- Tops decay before hadronising \Rightarrow keep spin information
 - measurement of angular distance between 2 leptons 0 in 2ℓ tt decay \rightarrow sensitive to **spin correlation**
- **Run 2 ATLAS measurement:**
 - eµ events selected 0
 - $\Delta \varphi_{ee}$ and $\Delta \eta_{ee}$ distributions unfolded Ο (parton & particle level) and compared to various predictions
 - also provided measurements **in bins of m**_{tt} 0
 - *tt* system reconstructed with neutrino-weighting technique

tt Spin Correlation

- Unfolded data in some **tension** with MC predictions (NLO-QCD+PS)
 - larger spin correlation observed in data 0
 - **3.2** σ significance Ο
- Most **new physics** models (e.g. SUSY stop close to *m*,) would *reduce* spin correlation
 - discrepancy in opposite direction Ο

Region	$f_{\rm SM} \pm (\text{stat.,syst.,theory})$	Significance (excl. theory uncertainties)
Inclusive	$1.249 \pm 0.024 \pm 0.061 \pm 0.040$	3.2 (3.8)
$m_{t\bar{t}} < 450 \text{ GeV}$	$1.12 \pm 0.04 ~^{+0.12}_{-0.13} \pm 0.02$	0.86 (0.87)
$450 \le m_{t\bar{t}} < 550 \text{ GeV}$	$1.18 \pm 0.08 \ ^{+0.13}_{-0.14} \pm 0.08$	1.0 (1.1)
$550 \le m_{t\bar{t}} < 800 \text{ GeV}$	$1.65 \pm 0.19 ~^{+0.31}_{-0.41} \pm 0.22$	1.3 (1.4)
$m_{t\bar{t}} \ge 800 \text{ GeV}$	$2.2 \pm 0.9 {}^{+2.5}_{-1.7} \pm 0.7$	0.58 (0.61)

tt Spin Correlation

Parton level $\varphi(l^+, \bar{l})/\pi$ [rad/ π]

arXiv:1901.05407 [hep-ph]

ATLAS

Associated production: *tt+X*

- **Rare** processes, interesting by themself
- A way to measure directly **top couplings**
 - *ttZ, ttH, tty* vertexes 0
 - new interactions like **4-fermion interactions** (e.g. *ttbb, tttt*) 0
- Important **background** processes for many new physics searches

tt +photon

1.5

150

200

250 30 p_{_}(γ) [GeV]

- Eur. Phys. J. C 79 (2019) 382
 ℓ and dilation selections
- *tt* 1ℓ and dilepton selections
 - plus **1 isolated y** with $p_{T} > 20$ GeV
- Background mostly from "fake" photons
 - multi-variate (MVA) discriminants to discriminate vs. background
- **Fiducial** cross-section(s) from fit to event-level MVA distribution
- **Differential** cross-section also extracted, cutting on MVA
 - $\circ \quad \text{vs. } p_{\mathsf{T}}(\gamma), \, \eta(\gamma), \, \Delta R(\ell, \gamma), \, \Delta \eta(\ell \ell), \, \Delta \varphi(\ell \ell)$

tt +*bb*

- *tt* plus **additional heavy flavour** jets:
 - suffers from **large theory uncertainties**
 - important **background** for processes like *ttH* ($H \rightarrow bb$)

Events

Pred./Data

- Analysis strategy & setup:
 - 0 1ℓ and 2ℓ channels,
 ask for ≥ 3 *b*-tagged jets
 - o use full information from b-tagging algorithms to fit in data fractions of tt+≥1b, tt+≥1c, tt+light jets
 - fiducial inclusive and differential cross-sections extracted
 - **particle-level** definition of *b*-jets (no matching to partons)

b-tag discriminant bin

tt +*bb*

- Differential cross-section vs. additional *b*-jet kinematics
- Results compared with many **MC predictions**:
 - inclusive tt, dedicated *tt+bb*, multi-leg *tt*+jets NLO + PS
 - 5 FS, 4 FS
- Most MC *underpredict tt+bb* total yield
- Most MC setups describe kinematics sufficiently good
 - systematic uncertainties on unfolded data still large
- Unfolded data important for future MC development

tt +*W*/*Z*

- $ttZ \rightarrow tZ$ -coupling, $ttW \rightarrow$ not linked to tW-coupling, but important background process
- *ttZ* and *ttW* share similar signature ⇒ common analysis, **simultaneous measurement**
- Targeting mostly **multi-leptonic final states**, i.e. "at least two e/µ with same-sign charges"
 - clean signature, small irreducible background
 - important to control **background** from **fake** and non-prompt leptons

tt +*W*/*Z*

• <u>Results:</u>

Fit configuration	$\mu_{t\bar{t}Z}$	$\mu_{t\bar{t}W}$		
Combined	1.08 ± 0.14	1.44 ± 0.32		
2ℓ-OS	0.73 ± 0.28	-		
$3\ell t\bar{t}Z$	1.08 ± 0.18	-		
2ℓ -SS and $3\ell t\bar{t}W$	-	1.41 ± 0.33		
4 <i>l</i>	1.21 ± 0.29	-		

- *ttZ* cross-section **consistent** with SM at 10% accuracy
- *ttW* ~1 sigma larger than SM prediction (*in line with Run 1 results*)

EFT interpretations:

Coefficients	$C^{(3)}_{\phi Q}/\Lambda^2$	$C_{\phi t}/\Lambda^2$	C_{tB}/Λ^2	C_{tW}/Λ^2
Previous indirect constraints at 68% CL	[-4.7, 0.7]	[-0.1, 3.7]	[-0.5, 10]	[-1.6, 0.8]
Previous direct constraints at 95% CL	[-1.3, 1.3]	[-9.7, 8.3]	[-6.9, 4.6]	[-0.2, 0.7]
Expected limit at 68% CL	[-2.1, 1.9]	[-3.8, 2.7]	[-2.9, 3.0]	[-1.8, 1.9]
Expected limit at 95% CL	[-4.5, 3.6]	[-23, 4.9]	[-4.2, 4.3]	[-2.6, 2.6]
Observed limit at 68% CL	[-1.0, 2.7]	[-2.0, 3.5]	[-3.7, 3.5]	[-2.2, 2.1]
Observed limit at 95% CL	[-3.3, 4.2]	[-25, 5.5]	[-5.0, 5.0]	[-2.9, 2.9]
Expected limit at 68% CL (linear) Expected limit at 95% CL (linear) Observed limit at 68% CL (linear) Observed limit at 95% CL (linear)	[-1.9, 2.0] [-3.7, 4.0] [-1.0, 2.9] [-2.9, 4.9]	[-3.0, 3.2] [-5.8, 6.3] [-1.8, 4.4] [-4.8, 7.5]	-	-

Focusing on **differential cross-sections** (for *ttZ*) for *future* publications

ATLAS EXPERIMENT

- Up to 10 jets and \geq 4 *b*-tags required in final state, large-R jets to tag semi-boosted hadronic tops
- **Overwhelming background** from *tt*+jets, estimated from data, in CRs dominated by *tt*+jets:
 - effective *b*-tagging probabilities extracted at low jet multiplicities
 - and used to **weight data events** with 2-tags \rightarrow *pseudo-data* sample for signal regions

4-top

- 2 channels **combined**:
 - close to sensitivity to SM-4-top production
 - excess in multi-lepton channel mitigate by "tt+jets" channel

- Sensitivity study for HL-LHC in multi-lepton channel:
 - 11% precision expected with 3 ab⁻¹
 ATL-PHYS-PUB-2018-047

SR2I-6j3b

SR2I-6j4b

SR31-6j3b

SR31-6j4b

36 fb ⁻¹	Exp sign.	Obs. sign.
SS-2L/3L	0.8	3.0
1L/OS-2L	0.6	1.0
Combination	1.0	2.8

Summary

• Rich Top Physics experimental program ongoing in LHC Run 2 σ [pb]

- Experimental **precision** challenging and helping theory predictions
- Many interesting Run 2 results **still to come**!

Standard Model Production Cross Section Measurements

Status: March 2019

8 TeV differential

Differential cross-sections

• Unfolding:

200

400

ATLAS

600

800

p_t,had [GeV]

1000

• extract differential cross-sections from signal event counts in bins of measured quantities

[GeV] (detector level)

800

p_____[GeV]

1000

600

800

p_t,had [GeV]