UNIVERSITÀ
DEGLI STUDI DI TRIESTE

Higgs production at Run 2 and
 projections for the HL-LHC With the CMS Phase-2 Detector

Alessandro Da Rold, on behalf of the CMS Collaboration

Interpreting the LHC Run 2 data and Beyond

Overview

Run 2

- $\mathrm{H} \rightarrow \tau \tau @ 13 \mathrm{TeV}$
- HH \rightarrow bb $\gamma \gamma$ @ 13 TeV
- HL-LHC
- ECAL @ HL-LHC
- $\mathrm{H} \rightarrow \gamma \gamma$
, $\mathrm{H} \rightarrow \tau \tau, \mathrm{HH} \rightarrow \mathrm{bb} \gamma \gamma$

Not in this talk

- ECAL @ Run 2
- $\mathrm{H} \rightarrow \gamma \gamma @ 13 \mathrm{TeV}$
- H \rightarrow ZZ @ 13 TeV

Details in Federico's talk!

ECAL during Run 2

- Hermetic, homogenous calorimeter placed inside solenoid magnet \rightarrow Barrel and endcaps configuration
- 75000 lead tungstate $\left(\mathrm{PbWO}_{4}\right)$ crystals: fast scintillation, radiation resistant, short radiation length
- Purposes:
- Precise measurement of electron and photon energies
- Precise time measurement (background rejection, particle identification)
- Energy resolution and particle identification fundamental in the discovery and characterisation of the Higgs boson

Selection

${ }^{\nu} \mu \tau_{h}, \mathrm{e} \tau_{\mathrm{h}}, \mathrm{e} \mu, \tau_{\mathrm{h}} \tau_{\mathrm{h}}$

- Leptons must have opposite charge
- High p^{2} miss and small $\mathrm{M}_{\mathrm{T}} \mathrm{W}$, b-tag

$\mathrm{H} \rightarrow \tau \tau$

- Fundamental to establish fermion masses generation mechanism
- All decays studied exploiting ECAL information on number of deposits (1 -prong, 1 -prong $+\pi^{0}(\mathrm{~s}), 3$-prongs)

Categories

- O-jet: H from gluon fusion
- VBF: most sensitive channel
- Boosted: associate jet production

- Systematics

- Data driven background estimations ~10\%
- τ identification 5\% and trigger 10\%
- Lepton scale factors 2-3\%

- Combine results for all channels as a function of $\log _{10}(\mathrm{~S} /(\mathrm{S}+\mathrm{B}))$
- Excess corresponding to 125 GeV particle \rightarrow Significance 4.9σ (5.9σ with 7 and 8 TeV measurement)

Signal strength of $1.09_{-0.26}^{+0.27}$ \rightarrow Compatible with SM

Best fit $\mu=\sigma / \sigma_{S M}$
$35.9 \mathrm{fb}^{-1}(13 \mathrm{TeV})$

- $\gamma \gamma$ trigger
* Jet and γ relative isolation
. $\mathrm{H}(\gamma \gamma)$ and $\mathrm{H}(\mathrm{bb})$ in mass window
- BSM theories foresee particles that couple to H pairs

Final state fully reconstructed, "big" branching ratio

- Both resonant and non-resonant searches

- Categories

- Sensitivity to non resonant searches
- MVA discrimination between H and $\mathrm{n} \gamma+\mathrm{jets}$
- Signal model: double Crystal-Ball
- Background model: $n \gamma+j e t s$ (polynomials) and single H distributions

Main background: $n \gamma+j e t s$

$\mathrm{HH} \rightarrow \mathrm{bb} \gamma \gamma$

- No evidence of SM HH production \rightarrow Limits on cross section and branching ratio
- Exclusion of possible spin-0 and spin-2 particles
- Upper limit on $\mu н н<24$
- Limits on anomalous HHH coupling - $11<\mathrm{k}_{\lambda}<17$
- Jet energy resolution and scale 5\%

Theoretical uncertainties 3-5\%

From LHC to High-Luminosity LHC

- Performances:
- Centre of mass energy 14 TeV
- Instantaneous luminosity from 1.7×10^{34} to $7.5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- Goal: $3000 \mathrm{fb}^{-1}$ integrated luminosity \rightarrow Huge statistics
- Consequences:

- Huge crystal irradiation \rightarrow Loss of $\sim 50 \%$ of barrel crystals' transparency and small reduction of energy resolution (endcap crystals replaced by HGCAL)
- Substantial increase in pileup rate: from ~60 to 140-200 events/collision
- In order to maintain Phase-1 performances, need to:
- Reduce noise in photo detectors (Avalanche Photo-Diodes) due to LHC irradiation \rightarrow Cooling and new front-end pre-amplifier with shorter shaping time
- Perform precision time measurements to identify primary vertexes and reduce pileup contamination

ECAL UPGRADE

- Energy and time determination: sampling of shaped signal from photodetectors \rightarrow Upgrade of the very front-end, reduction of the shaping time
- Cooling system to reduce APDs dark current: from $18^{\circ} \mathrm{C}$ to $9^{\circ} \mathrm{C}$

- Model the signal as a sum of one in-time pulse and a series of out-of-time pulses
- Remove out of time pileup
- Obtain time of arrival from template fit of pulse shape

Test beam results: 30 ps resolution achievable for 25 GeV photons

H $\rightarrow \gamma \gamma$ @ HL-LHC

- Photon energy resolution

- Exploit 3×3 crystal information to reduce pileup and noise contribution

- Vertex position

- Dominant with the increase of pileup

- 140 pileup $\rightarrow 40 \%$ vertex reconstruction efficiency
- Solution: $\mathbf{O}(30 \mathrm{ps})$ time resolution allows better than 1 cm primary vertex determination \rightarrow Pileup contributions back to Run 2 levels

- Fundamental $Z \rightarrow \tau \tau$ background rejection \rightarrow Excellent mass resolution required
- Same conditions of Run 2 achievable with upgrade
- Expected sensitivity on coupling modifier of 2-5\% (30\% in Run 2)

- Expected significance 1.9σ with $1000 \mathrm{fb}^{-1}$
- Improvements considering also γ background rejection with new ECAL timing performances
- $\mathrm{M}(\gamma \gamma)$ allows separation between signal and nonresonant background, no H - HH discrimination

Summary

- Excellent results in Higgs searches in Run 2 (see also H \rightarrow bb and coupling studies in general)
- Huge statistics needed to study rare processes such as HH production \rightarrow High-Luminosity LHC
- HL-LHC is a very challenging environment due to pileup and radiation condition \rightarrow Need an upgraded detector
- Precise timing and new electronics guarantee similar performances as those of Run 2
- More precise analysis of single Higgs processes and study of rare multi-Higgs production are expected from simulations

BACKUP

The CMS experiment

CMS DETECTOR
Total weight
: 14,000 tonnes
Overall diameter $: 15.0 \mathrm{~m}$
Overall length $\quad: 28.7 \mathrm{~m}$

STEEL RETURN YOKE
12,500 tonnes

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)
$\sim 76,000$ scintillating PbWO_{4} crystals

HADRON CALORIMETER (HCAL) Brass + Plastic scintillator $\sim 7,000$ channels

SILICON TRACKERS
Pixel ($100 \times 150 \mu \mathrm{~m}$) $\sim 16 \mathrm{~m}^{2} \sim 66 \mathrm{M}$ channels
Microstrips ($80 \mathrm{x} 180 \mu \mathrm{~m}$) $\sim 200 \mathrm{~m}^{2} \sim 9.6 \mathrm{M}$ channels
SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying $\sim 18,000 \mathrm{~A}$ MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
Silicon strips $\sim 16 \mathrm{~m}^{2} \sim 137,000$ channels

FORWARD CALORIMETER Steel + Quartz fibres ~2,000 Channels

Ageing perspectives

- PbWO_{4} crystals
- Transparency loss: γ radiation damages can be cured (annealing), hadron interactions produce permanent defects (shift in wavelength)
- Lower temperature operations $\left(9^{\circ} \mathrm{C}\right.$ vs $\left.18^{\circ} \mathrm{C}\right)$ limit the annealing but increase the light output

Avalanche Photo-Diodes

- Experience high dark current due to high level of LHC irradiation \rightarrow Worse energy resolution

Lower operations' temperature $\left(9^{\circ} \mathrm{C}\right.$ vs $\left.18^{\circ} \mathrm{C}\right)$ strongly reduces dark current

