Search for electroweak production of charginos and sleptons decaying to final states with two leptons and missing transverse momentum at Run II with the ATLAS detector

#### Francesco Giuseppe Gravili on behalf of the ATLAS Collaboration

INFN Section of Lecce University of Salento, Dept. Mathematics and Physics *Ennio de Giorgi* 

Interpreting the LHC Run 2 Data and Beyond - Trieste (TS), May, 29th 2019





Introduction

Decays Analysis Strategy

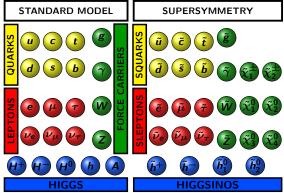
gy SRs

CRs VRs

Systematics

Results Cor

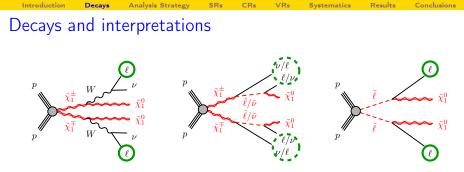
Conclusions


# Introduction: SUperSYmmetry (SUSY)

Supersymmetry is a theoretical extension of the Standard Model (SM):

- It introduces a partner for each particle in the SM, whose spin differs by 1/2
- It would solve the hierarchy problem
- It allows force unification
- It introduces a new quantic number  $R = (-1)^{3(B-L)+25}$ , such that

$${\it R} = egin{cases} +1 & {
m for} \ {\it Particles} \ -1 & {
m for} \ {\it S-Particles} \end{cases}$$


 If R is conserved, the lightest supersymmetric particle (LSP) is stable → dark matter candidate



**Charginos** and **neutralinos** are combinations of supersymmetric charged and neutral partners of gauge and Higgs bosons:

$$\left. egin{split} \widetilde{\chi}^{\pm}_{\mathbf{i}}, \; i=1,2 \ \widetilde{\chi}^{\mathbf{0}}_{\mathbf{j}}, \; j=1,2,3,4 \end{split} 
ight\}$$
 Mass eigenstates

F.G. Gravili



- Analysis and interpretation of results based on simplified models
- Analysis optimised for the first scenario, but results also interpreted in the other ones
- Only  $\tilde{e}$  and  $\tilde{\mu}$  considered in the last model and  $\tilde{e}_L$ ,  $\tilde{e}_R$ ,  $\tilde{\mu}_L$ ,  $\tilde{\mu}_R$  assumed to be mass-degenerate
- Signature: 2 Opposite Sign (OS) leptons (electrons and muons) and Missing Transverse Energy (E<sup>miss</sup><sub>T</sub>)
- Results based on <u>ATLAS-CONF-2019-008</u> unless stated otherwise

Results

## Analysis strategy: Global Outline

- $\bullet\,$  Cut&Count analysis using full Run II data, corresponding to  ${\cal L}=139~{\rm fb}^{-1}$
- Analysis based on kinematic variable  $m_{T2}$  used to bound the masses of a pair of particles that are assumed to have each decayed semi-invisibly into one visible and one invisible particle
- Other useful variables:  $E_{\rm T}^{\rm miss}$  and  $E_{\rm T}^{\rm miss}$  significance, the latter used to evaluate the likelihood of the production of invisible particles
- Main background contributions:  $t\bar{t}$  and Dibosons (VV)
- Preselection cuts applied:

| Variable                               | Value                                                           |
|----------------------------------------|-----------------------------------------------------------------|
| Lepton flavour <sup>1</sup>            | $e\mu$ and $ee$ , $\mu\mu$ with $ m_{\ell\ell} - m_Z  > 30$ GeV |
| Leading lepton $p_{\mathcal{T}}$ [GeV] | > 25                                                            |
| Sub-Leading lepton $p_T$ [GeV]         | > 25                                                            |
| Invariant Mass $m_{\ell\ell}$ [GeV]    | > 25                                                            |
| <i>m</i> <sub>T2</sub> [GeV]           | > 60                                                            |

<sup>1</sup>Different Flavour (DF) and Same Flavour (SF) events

F.G. Gravili

Introduction

Results

### Analysis strategy: Signal Regions (SR)

- Using CL<sub>s</sub> prescription, global cuts defining SRs being optimized from 3 benchmark points: m(\(\tilde{\chi}^{\pm}, \tilde{\chi}^0\)) = (250, 1), (300, 50), (300, 100)
- $m_{T2}$ -binning optimized for the entire signal grid

| Inclusive SRs for  | Region                         | SR-DF-0J   | SR-DF-1J     | SR-SF-0J  | SR-SF-1J    |
|--------------------|--------------------------------|------------|--------------|-----------|-------------|
|                    | $n_{ m non-b-tagged~jets}$     | = 0        | = 1          | = 0       | = 1         |
| calculating        | $m_{\ell_1\ell_2}$ [GeV]       | >          | 100          | > 1       | 21.2        |
| model-independent  | E <sup>miss</sup> [GeV]        |            | > 1          | 10        |             |
| limits on possible | E <sup>miss</sup> significance |            | >            | 10        |             |
| Beyond Standard    | n <sub>b-tagged jets</sub>     |            | =            | 0         |             |
|                    |                                | Binne      | ed SRs       | Inclusi   | ve SRs      |
| Model (BSM)        |                                |            | 0, 105)      | ∈ [10     |             |
| physics            |                                |            | 5, 110)      | ∈ [100    |             |
|                    |                                |            | 0, 120)      |           | 0, 160)     |
| Binned SRs for     |                                |            | 0, 140)      | $\in$ [16 | $0,\infty)$ |
| calculating        | <i>m</i> ⊺2 [GeV]              |            | 0, 160)      |           |             |
| 6                  |                                |            | D, 180)      |           |             |
| model-dependent    |                                | $\in$ [180 | 0, 220)      |           |             |
| exclusion limits   |                                | ∈ [220     | 0, 260)      |           |             |
|                    |                                | ∈ [26      | $(0,\infty)$ |           |             |

Decays Analysis Strategy

### Analysis strategy: Control Regions (CR)

Main contributions to the SM irreducible background are evaluated in dedicated CRs, normalizing them (*scale factors*) to data through a likelihood fit:

- WW (Dominant contribution)
- ZZ and WZ (in regions with SF events)
- $t\bar{t}$  and single top

Introduction

The reducible background of fake and non-prompt (FNP) leptons estimated using the Matrix Method (MM)

| Region                         | CR-WW           | CR-VZ               | CR-top |
|--------------------------------|-----------------|---------------------|--------|
| Lepton Flavour                 | DF              | SF                  | DF     |
| n <sub>b-tagged jets</sub>     | = 0             | = 0                 | = 1    |
| nnon-b-tagged jets             | = 0             | = 0                 | = 0    |
| $m_{T2}$ [GeV]                 | $\in$ [60, 65]  | > 120               | > 80   |
| E <sup>miss</sup> [GeV]        | $\in$ [60, 100] | > 110               | > 110  |
| E <sup>miss</sup> significance | $\in$ [5, 10]   | > 10                | > 10   |
| $m_{\ell_1 \ell_2}$ [GeV]      | > 100           | $\in$ [61.2, 121.2] | > 100  |

Results

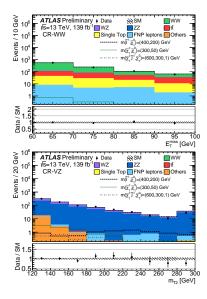
Analysis strategy: Validation Regions (VR)

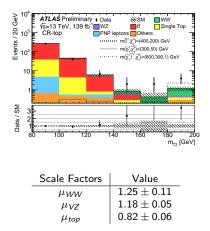
The normalization of the irreducible background from the fit is validated in 6 different VRs:

- VR-WW-0, VR-WW-1 according to the multiplicity of non-b-tagged jets
- VR-VZ for WZ and ZZ productions
- VR-top-low, VR-top-high, VR-top-WW for modelling of the top-quark production in regions with different  $m_{T2}$  ranges or where the contribution from top-quark backgrounds is relevant

| Region                         | VR-WW-0J    | VR-WW-1J    | VR-VZ               | VR-top-low  | VR-top-high | VR-top-WW   |
|--------------------------------|-------------|-------------|---------------------|-------------|-------------|-------------|
| Lepton flavour                 | DF          | DF          | SF                  | DF          | DF          | DF          |
| <sup>n</sup> b-tagged jets     | = 0         | = 0         | = 0                 | = 1         | = 1         | = 1         |
| <sup>n</sup> non-b-tagged jets | = 0         | = 1         | = 0                 | = 0         | = 1         | = 1         |
| m <sub>T2</sub> [GeV]          | ∈ [65, 100] | ∈ [65, 100] | ∈ [100,120]         | ∈ [80, 100] | > 100       | ∈ [60, 65]  |
| E <sup>miss</sup> [GeV]        | > 60        | > 60        | > 110               | > 110       | > 110       | ∈ [60, 100] |
| E <sup>miss</sup> significance | > 5         | > 5         | > 10                | ∈ [5, 10]   | > 10        | ∈ [5, 10]   |
|                                | > 100       | > 100       | $\in$ [61.2, 121.2] | > 100       | > 100       | > 100       |

Introduction


Decays


|   | Introduction | Decays | Analysis Strategy | SRs | CRs | VRs | Systematics | Results | Conclusions |  |
|---|--------------|--------|-------------------|-----|-----|-----|-------------|---------|-------------|--|
| ç | Systemat     | ic un  | certainties       |     |     |     |             |         |             |  |

All relevant sources of experimental and theoretical systematic uncertainty are included in the likelihood fit:

- The dominant sources of systematic uncertainty are related to theory uncertainties in the MC modelling
- The largest sources of experimental uncertainty being related to the jet energy scale and resolution
- Minor sources of experimental uncertainty being related to b-jet identification efficiency, lepton energy scale and resolution, trigger efficiencies and re-weighting for different pile-up conditions
- Contributions to the uncertainty in the MM estimate of the FNP background

### Results from likelihood fit: CRs





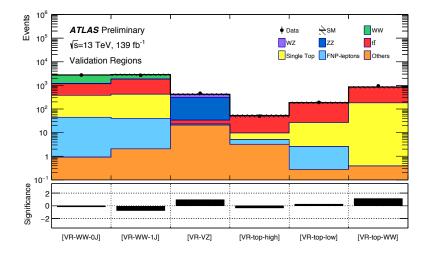
#### Results from likelihood fit: VRs

Decays

Analysis Strategy

Good agreement between observed and fitted events in all of the VRs

SRs


CRs

VRs

**Systematics** 

Results

Conclusions

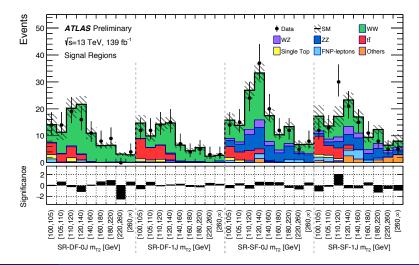


Introduction

Analysis Strategy Results from likelihood fit: binned SRs

No significant excess in Data and Monte-Carlo (MC) comparison in none of the binned SRs

SRs


CRs

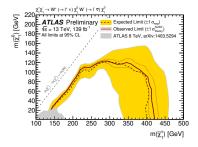
VRs

**Systematics** 

Results

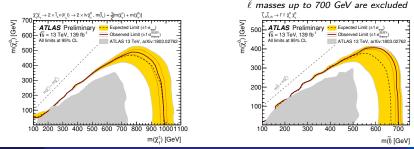
Conclusions




Search for electroweak production of charginos and sleptons decaying to final states with two leptons and missing transverse momentum at Run II with the ATLAS detector

Introduction

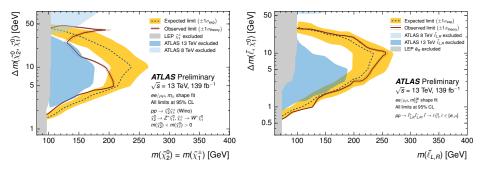
Decays


Introduction Decays Analysis Strategy SRs CRs VRs Systematics **Results** Conclusions

#### Results: Model-Dependent Limits



 ${ ilde \chi}^\pm_{f 1}$  masses up to 420 GeV and 1 TeV are excluded


Exclusion limits at 95% CL set on the masses of the chargino, neutralino and sleptons for the simplified models considered



F.G. Gravili



From the compressed analysis, exclusion limits set on small mass splitting scenarios



F.G. Gravili

Introduction Decays Analysis Strategy SRs CRs VRs Systematics Results Conclusions
Conclusions

- A search for the electroweak production of charginos and sleptons decaying into final states with exactly two OS leptons and missing transverse momentum have been presented
- The analysis uses 139 fb<sup>-1</sup> of  $\sqrt{s} = 13$  TeV proton-proton collisions recorded by the ATLAS detector at the LHC between 2015 and 2018
- Three scenarios are considered:
  - ► The production of  $\tilde{\chi}_1^{\pm}$  pairs, followed by their decays into final states with leptons and  $\tilde{\chi}_1^0$ , via either *W*-bosons or  $\tilde{\ell}/\tilde{\nu}$
  - ▶ The direct production of  $\tilde{\ell}$  pairs, where each slepton decays directly into  $\tilde{\chi}_1^0$  and a lepton
- No significant deviations from the SM expectations are observed and limits at 95% CL are set on the masses of relevant SUSY particles in each of these scenarios
- These results significantly improve upon previous exclusion limits for the same scenarios

### Backup

F.G. Gravili

## $E_T^{miss}$ significance

Previously, the event-based  $E_T^{miss}$  significance S was defined as

$$S = \frac{E_T^{miss}}{\sqrt{\sum E_T}}$$

assuming  $E_T^{miss}$  being calculated using calorimeter signals only. A new approach is to consider the log-likelihood ratio:

$$\mathcal{S}^2 = 2 \ln \left( \frac{\max_{p_T^{inv} \neq 0} \mathcal{L}(\mathcal{E}_T^{miss} | p_T^{inv})}{\max_{p_T^{inv} = 0} \mathcal{L}(\mathcal{E}_T^{miss} | p_T^{inv})} \right)$$

Last expression can be rewritten in terms of total variances  $\sigma_L^2$  and  $\sigma_T^2$  in the longitudinal and transverse directions to the  $E_T^{miss}$ , and a correlation factor  $\rho_{LT}$  of the longitudinal L and transverse T measurements:

$$S^2 = \frac{|E_T^{miss}|^2}{\sigma_L^2(1-\rho_{LT}^2)}$$

F.G. Gravili

### Systematic uncertainties

All relevant sources of experimental and theoretical systematic uncertainty affecting the SM background estimates and the signal predictions are included in the likelihood fit:

- The dominant sources of systematic uncertainty are related to theory uncertainties in the MC modelling
  - For dibosons production, relevant contributions from renormalisation and factorisation scales are accounted for
  - ► For tt̄ production, uncertainties in the parton shower simulation, modelling of initial- and final-state radiation, choice of the event generator are the dominant contributions
  - For single top-quark production, an uncertainty is associated with the treatment of the interference between the Wt and  $t\bar{t}$  samples
- The largest sources of experimental uncertainty being related to the jet energy scale (JES) and jet energy resolution (JER)
- Minor sources of experimental uncertainty being related to soft-term resolution, scale, b-jet identification efficiency, lepton energy scale and resolution, trigger efficiencies and re-weighting procedure to account for different pile-up conditions
- Contributions to the uncertainty in the MM estimate of the FNP background

#### Results from likelihood fit: CRs

| Region               | CR-WW           | CR-VZ           | CR-top          |
|----------------------|-----------------|-----------------|-----------------|
| Observed events      | 962             | 811             | 321             |
| Fitted backgrounds   | $962\pm31$      | $811\pm28$      | $321 \pm 18$    |
| Fitted WW            | $670 \pm 60$    | $19.1 \pm 1.9$  | $5.5 \pm 2.7$   |
| Fitted WZ            | $11.8 \pm 0.7$  | $188 \pm 7$     | $0.32\pm0.15$   |
| Fitted ZZ            | $0.29 \pm 0.06$ | $577 \pm 23$    | -               |
| Fitted $t\bar{t}$    | $170 \pm 50$    | $1.8 \pm 1.3$   | $270 \pm 16$    |
| Fitted Single top    | $88 \pm 8$      | $0.65 \pm 0.35$ | $38.6 \pm 2.6$  |
| Other backgrounds    | $0.17 \pm 0.06$ | $19 \pm 7$      | $2.21 \pm 0.20$ |
| FNP                  | $21\pm 8$       | $5^{+6}_{-5}$   | $4.2\pm2.2$     |
| Simulated WW         | 528             | 15.1            | 4.3             |
| Simulated $WZ$       | 9.9             | 158             | 0.27            |
| Simulated ZZ         | 0.24            | 487             | -               |
| Simulated $t\bar{t}$ | 210             | 2.2             | 327             |
| Simulated Single top | 107             | 0.8             | 46.7            |

### Results from likelihood fit: VRs

| Regions              | VR-WW-0J       | VR-WW-1J        | VR-VZ               | VR-top-low             | VR-top-high         | VR-top-WW              |
|----------------------|----------------|-----------------|---------------------|------------------------|---------------------|------------------------|
| Observed events      | 2742           | 2671            | 464                 | 190                    | 50                  | 953                    |
| Fitted backgrounds   | $2760 \pm 120$ | $2840\pm250$    | $420\pm40$          | $185\pm17$             | $53\pm7$            | $850 \pm 80$           |
| Fitted WW            | $1550\pm150$   | $990 \pm 120$   | $17.6 \pm 2.2$      | $2.1 \pm 0.7$          | $2.6 \pm 1.3$       | $16.1 \pm 2.5$         |
| Fitted $WZ$          | $34.2\pm2.0$   | $27.0\pm2.3$    | $99 \pm 9$          | $0.05^{+0.17}_{-0.05}$ | $0.2^{+0.6}_{-0.2}$ | $0.53 \pm 0.13$        |
| Fitted $ZZ$          | $0.50\pm0.06$  | $0.39 \pm 0.07$ | $268 \pm 25$        | _                      | _                   | $0.01^{+0.03}_{-0.01}$ |
| Fitted $t\bar{t}$    | $790 \pm 110$  | $1400 \pm 270$  | $10.5\pm3.2$        | $157 \pm 15$           | $40 \pm 7$          | $650 \pm 70$           |
| Fitted Single top    | $336 \pm 32$   | $380 \pm 40$    | $2.2 \pm 1.4$       | $24.3\pm2.6$           | $4.6\pm1.4$         | $182 \pm 15$           |
| Other backgrounds    | $0.92\pm0.30$  | $2.1 \pm 0.5$   | $21^{+27}_{-21}$    | $0.28\pm0.06$          | $3.20\pm0.20$       | $0.39 \pm 0.11$        |
| FNP                  | $44\pm23$      | $38\pm21$       | $0.2^{+2.1}_{-0.2}$ | $2.3\pm1.4$            | $1.8\pm0.5$         | -                      |
| Simulated WW         | 1230           | 790             | 14.0                | 1.6                    | 2.0                 | 12.8                   |
| Simulated $WZ$       | 28.8           | 22.8            | 84                  | 0.04                   | 0.1                 | 0.45                   |
| Simulated $ZZ$       | 0.42           | 0.33            | 226                 | -                      | -                   | 0.01                   |
| Simulated $t\bar{t}$ | 960            | 1700            | 13                  | 190                    | 49                  | 790                    |
| Simulated Single top | 406            | 462             | 2.6                 | 29.4                   | 5.6                 | 220                    |

#### Results: Model-Independent Limits

| Region                                             | SR-DF-0J                   | SR-DF-0J                   | SR-DF-0J                     | SR-DF-0J                     | Region                                             | SR-SF-0J                    | SR-SF-0J                   | SR-SF-0J                     | SR-SF-0J                     |
|----------------------------------------------------|----------------------------|----------------------------|------------------------------|------------------------------|----------------------------------------------------|-----------------------------|----------------------------|------------------------------|------------------------------|
| m <sub>T2</sub> [GeV]                              | ∈[100,∞)                   | €[160,∞)                   | €[100,120)                   | €[120,160)                   | $m_{T2}$ [GeV]                                     | ∈[100,∞)                    | ∈[160,∞)                   | ∈[100,120)                   | ∈[120,160)                   |
| Observed events                                    | 95                         | 21                         | 47                           | 27                           | Observed events                                    | 147                         | 37                         | 53                           | 57                           |
| Fitted backgrounds                                 | 97 ± 15                    | $18.8 \pm 2.4$             | 45 ± 9                       | $33 \pm 5$                   | Fitted backgrounds                                 | $145 \pm 12$                | $37.3 \pm 3.0$             | 56 ± 6                       | $51 \pm 5$                   |
| Fitted WW                                          | 76 ± 10                    | $18.2 \pm 2.3$             | 29 ± 4                       | 29 ± 4                       | Fitted WW                                          | 73 ± 8                      | $18.1 \pm 2.1$             | $27.6 \pm 3.0$               | $27 \pm 4$                   |
| Fitted WZ                                          | $1.53 \pm 0.17$            | $0.40 \pm 0.07$            | $0.66 \pm 0.11$              | $0.47 \pm 0.07$              | Fitted WZ                                          | $10.8 \pm 0.8$              | $3.08 \pm 0.26$            | $3.55 \pm 0.29$              | $4.2 \pm 0.5$                |
| Fitted ZZ                                          | $0.20 \pm 0.04$            | $0.14 \pm 0.03$            | $0.06^{+0.23}_{-0.06}$       | -                            | Fitted ZZ                                          | $38.6 \pm 2.6$              | $13.8 \pm 1.0$             | $11.1 \pm 0.8$               | $13.7 \pm 1.5$               |
| Fitted tī                                          | 13 ± 7                     | -                          | $11 \pm 6$                   | $2.1 \pm 1.2$                | Fitted tī                                          | $13 \pm 4$                  | -                          | $11 \pm 4$                   | $1.9 \pm 0.7$                |
| Fitted single top                                  | $3.7 \pm 2.0$              | -                          | $3.3 \pm 1.8$                | $0.42 \pm 0.25$              | Fitted single top                                  | $2.4 \pm 1.4$               | -                          | $2.2 \pm 1.3$                | $0.15 \pm 0.09$              |
| Other backgrounds                                  | $0.24 \pm 0.08$            | $0.07 \pm 0.02$            | $0.08 \pm 0.02$              | $0.09 \pm 0.05$              | Other backgrounds                                  | $2.1 \pm 1.5$               | $0.10^{+0.33}_{-0.10}$     | $0.2^{+1.4}_{-0.2}$          | $1.76 \pm 0.30$              |
| FNP leptons                                        | $1.8 \pm 0.6$              | -                          | $1.4 \pm 0.4$                | $0.47 \pm 0.17$              | FNP leptons                                        | $5.4 \pm 1.4$               | $2.2 \pm 0.4$              | $1.1 \pm 0.6$                | $2.0 \pm 0.5$                |
| S <sup>0.95</sup><br>obs                           | 33.9                       | 12.7                       | 23.8                         | 11.8                         | S <sup>0.95</sup><br>obs                           | 35.5                        | 14.3                       | 17.8                         | 23.5                         |
| Sexp                                               | $35.1^{+13.9}_{-10.0}$     | 11.0+4.9                   | $22.8^{+9.1}_{-6.5}$         | $15.1^{+6.3}_{-4.5}$         | S0.95                                              | 33.5+13.6                   | 14.5+6.3                   | $20.0^{+8.1}_{-5.6}$         | $18.7^{+7.8}_{-5.3}$         |
| σ <sup>0.95</sup> [fb]                             | 0.24                       | 0.09                       | 0.17                         | 0.08                         | $\sigma_{\rm obs}^{0.95}$ [fb]                     | 0.25                        | 0.10                       | 0.13                         | 0.17                         |
| P0                                                 | 0.50                       | 0.33                       | 0.44                         | 0.50                         | P0                                                 | 0.44                        | 0.50                       | 0.50                         | 0.25                         |
| Region<br>m <sub>T2</sub> [GeV]<br>Observed events | SR-DF-1J<br>∈[100,∞)<br>75 | SR-DF-1J<br>∈[160,∞)<br>15 | SR-DF-1J<br>∈[100,120)<br>38 | SR-DF-1J<br>∈[120,160)<br>22 | Region<br>m <sub>T2</sub> [GeV]<br>Observed events | SR-SF-1J<br>∈[100,∞)<br>120 | SR-SF-1J<br>∈[160,∞)<br>29 | SR-SF-1J<br>∈[100,120)<br>55 | SR-SF-1J<br>∈[120,160)<br>36 |
| Fitted backgrounds                                 | 75 ± 9                     | $15.1 \pm 2.7$             | 39 ± 6                       | $21.3 \pm 2.8$               | Fitted backgrounds                                 | $124 \pm 12$                | 36 ± 5                     | 48 ± 8                       | $40 \pm 4$                   |
| Fitted WW                                          | 48 ± 8                     | $13.4 \pm 2.6$             | $17.7 \pm 2.5$               | $17.1 \pm 2.8$               | Fitted WW                                          | 48 ± 6                      | $14.1 \pm 2.1$             | $18.1 \pm 2.4$               | $16.0 \pm 2.2$               |
| Fitted WZ                                          | $1.54 \pm 0.21$            | $0.53 \pm 0.12$            | $0.43 \pm 0.09$              | $0.59 \pm 0.11$              | Fitted WZ                                          | $13.4 \pm 1.0$              | $5.2 \pm 0.6$              | $3.62 \pm 0.33$              | $4.7 \pm 0.5$                |
| Fitted ZZ                                          | $0.08 \pm 0.01$            | $0.07^{+0.24}_{-0.07}$     | -                            | $0.01 \pm 0.00$              | Fitted ZZ                                          | $22.2 \pm 1.8$              | $9.1 \pm 1.1$              | $4.8 \pm 0.5$                | $8.2 \pm 0.9$                |
| Fitted tī                                          | 20 ± 7                     | $0.09 \pm 0.03$            | $17 \pm 6$                   | $2.4 \pm 0.9$                | Fitted tī                                          | $16 \pm 8$                  | $0.07^{+0.10}_{-0.07}$     | $14 \pm 7$                   | $1.6 \pm 0.8$                |
| Fitted single top                                  | $2.8 \pm 1.4$              | -                          | $2.6 \pm 1.3$                | $0.21 \pm 0.13$              | Fitted single top                                  | $3.3 \pm 1.7$               | -0.07                      | $2.6 \pm 1.4$                | $0.7 \pm 0.4$                |
|                                                    | 0.00 0.00                  |                            |                              |                              |                                                    |                             |                            |                              | 011 - 011                    |

| S <sup>0.95</sup><br>obs<br>S <sup>0.95</sup><br>exp | 25.1                  | 10.2                 | 16.8                 | 12.3                         | S <sup>0.95</sup><br>obs                             | 30.6                  | 11.2     | 27.3                 | 12.6     |
|------------------------------------------------------|-----------------------|----------------------|----------------------|------------------------------|------------------------------------------------------|-----------------------|----------|----------------------|----------|
|                                                      | $25.3^{+10.3}_{-7.2}$ | $10.3^{+4.6}_{-3.0}$ | $17.6^{+7.3}_{-5.1}$ | 11.9 <sup>+5.2</sup><br>-3.3 | S <sup>0.95</sup><br>obs<br>S <sup>0.95</sup><br>exp | 33.3 <sup>+12.9</sup> | 15.3+6.5 | $21.9^{+9.0}_{-6.2}$ | 15.5+6.5 |
| $\sigma_{\rm obs}^{0.95}$ [fb]                       | 0.18                  | 0.07                 | 0.12                 | 0.09                         | $\sigma_{\rm obs}^{0.95}$ [fb]                       | 0.22                  | 0.08     | 0.19                 | 0.09     |
| $p_0$                                                | 0.50                  | 0.50                 | 0.50                 | 0.45                         | $p_0$                                                | 0.50                  | 0.50     | 0.26                 | 0.50     |
|                                                      |                       |                      |                      |                              |                                                      |                       |          |                      |          |
|                                                      |                       |                      |                      |                              |                                                      |                       |          |                      |          |
|                                                      |                       |                      |                      |                              |                                                      |                       |          |                      |          |
|                                                      |                       | _                    | 1 6 1                |                              |                                                      |                       |          | <b>C</b> 1           |          |

 $11.1 \pm 4.0$ 

 $10.3 \pm 1.5$ 

Other backgrounds

ENP lentons

 $5.6 \pm 2.1$ 

 $1.80 \pm 0.34$ 

Other backgrounds 0.80 ± 0.13

 $2.2 \pm 0.6$ 

FNP leptons

 $0.25 \pm 0.05$ 

 $0.71 \pm 0.16$ 

 $0.19 \pm 0.10$ 

 $0.87 \pm 0.29$ 

 $0.34 \pm 0.04$ 

 $0.59 \pm 0.16$ 

 $3.8 \pm 1.3$ 

53+07

 $1.7^{+2.4}_{-1.7}$  $3.1 \pm 0.6$