

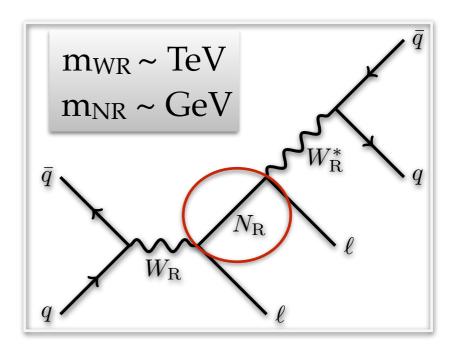
Search for heavy right-handed gauge bosons decaying into boosted heavy neutrinos with the ATLAS detector at $\sqrt{s} = 13$ TeV

Debarati Roy on behalf of the ATLAS Collaboration ILHC-ICTP2019

Standard Model (SM) and beyond

• SM :

=> Extremely successful theory. => Guided through new particle discoveries (Higgs boson glorifies its success in 2012!)

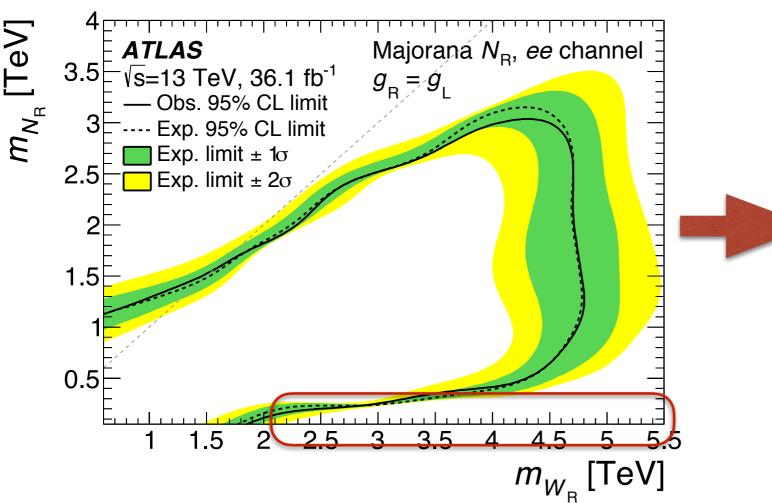

Couple of experimental observations
 SM cannot explain direct towards new
 Physics :+ :+ :+ :+

=> Neutrino oscillation concludes neutrino has a very small mass.

=> Several searches performed in LHC to explain origin of a very small neutrino mass! • Left Right Symmetric Model (LRSM) :

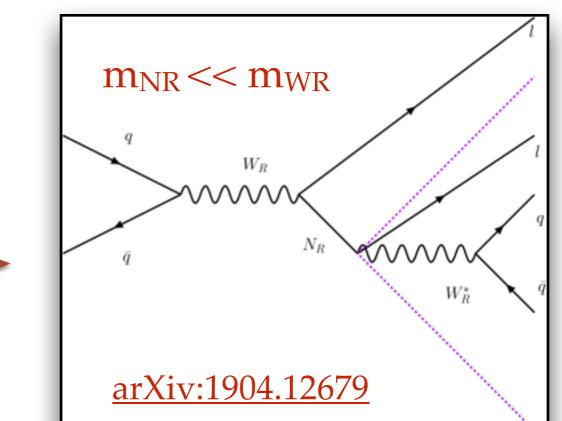
Restores parity by introducing right-handed gauge bosons (W_R)
 & right-handed neutrinos (N_R).

=> Small neutrino mass can be explained via its coupling to N_R via mass mixing matrix.


Final state => 2 jets + 2 leptons (resolved topology)

Extending phase space with boosted topology

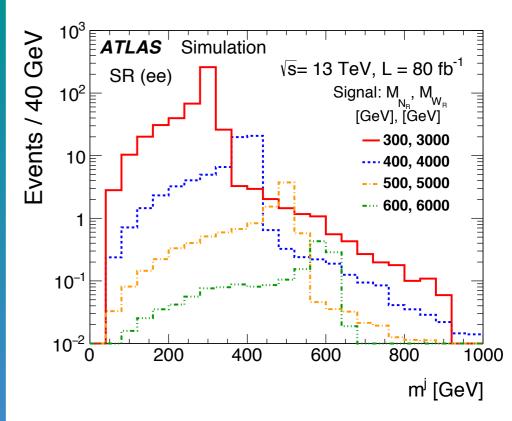
Several searches performed in ATLAS (& in CMS) with resolved topology.

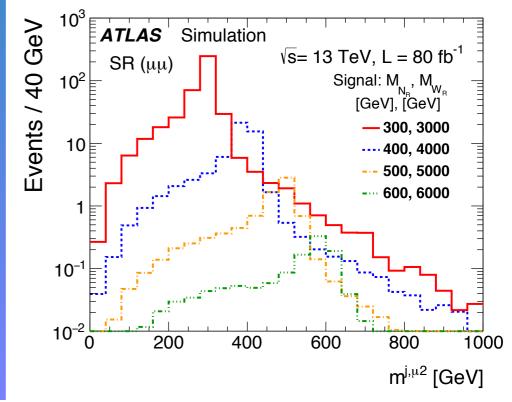

3

Latest ATLAS result in resolved scenario

 $m_{NR} \ll m_{WR}$:

- Less explored phase space with limited discovery potential estimation => Sensitivity drops with resolved topology.
- More efficient to consider boosted scenario!


 First time we looked at possibility for boosted heavy neutrinos in ATLAS with 80 fb⁻¹ of data at 13 TeV.


Boosted heavy neutrino search : Introduction

- Final state consists of a large radius jet & two leptons.
- Electron (e) & muon (μ) final states looked at separately with no flavour mixing.
- A balancing topology between hardest e (e1) or μ (μ1) & highest mass large radius jet (j) along with 2nd hardest e (e2) or μ (μ2) inside that large radius jet gives well shaped detector level variables.
- Different N_R mass computation performed between e & μ final states due to nature of jet reconstruction :

e channel : Mass of large radius jet (e energy part of j energy, **a distinguishing feature of this search**)

 μ channel : Mass of large radius jet & μ 2.

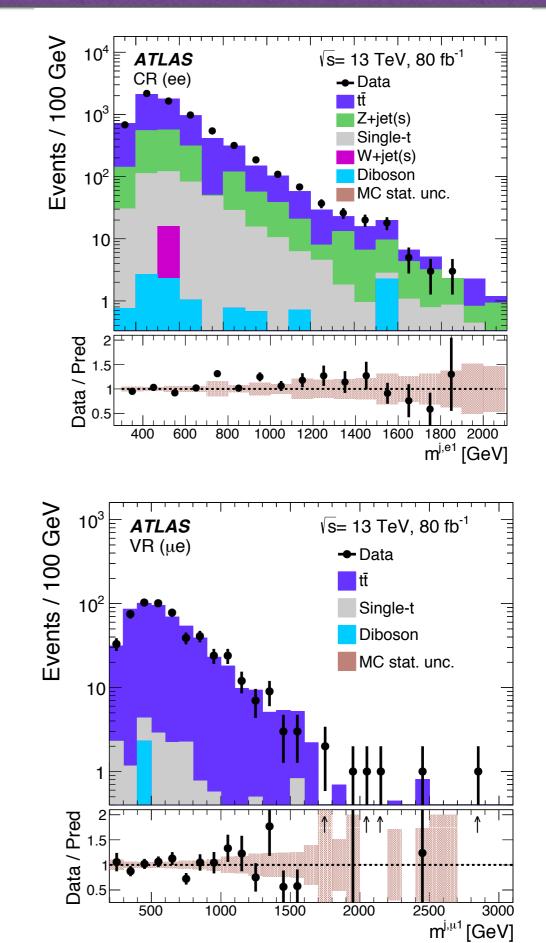
Boosted heavy neutrino search : Analysis Selection

Object Selection :

- Exactly 2 leptons & at least 1 large radius <u>trimmed</u> jet.
- Isolated e1/ μ 1 & non-isolated e2/ μ 2 (2nd hardest leptons allowed to • be close to large radius jet).
- Highest mass large radius (R = 1.0) jet (j) used with $p_T > 200$ GeV, $|\eta|$ ightarrow $< 2.0 \text{ (m}_{i} > 50 \text{ GeV in e final state)}.$
- $p_{T,e1/e2} > 26 \text{ GeV}, |\eta| < 2.47 \text{ excluding crack region. } p_{T,\mu1/\mu2} > 28 \text{ GeV},$ $|\eta| < 2.5.$ [GeV]

Topological Cuts :

- Azimuthal separation $(d\Phi)$ between $e_{1}/\mu_{1} \& j > 2.0$.
- ΔR between e2/µ2 & j < 1.0.

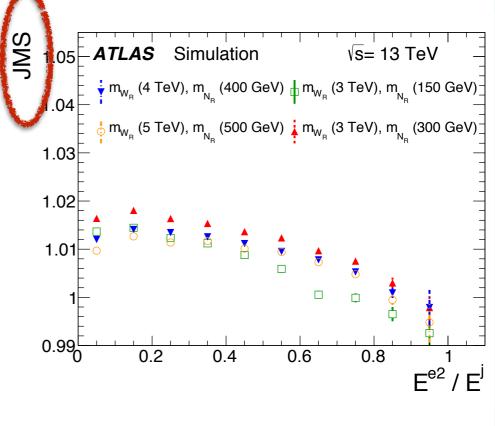

Further Background Reduction Cuts :

- Dilepton invariant mass $(m_{ll}) >$ 200 GeV.
- $d\Phi$ between $e1(\mu 1) \& e2(\mu 2) > 1.5$.

وم 1008 ق	ATLA	s Simula	ation			
ຂຶ້700	-Signal selection efficiency					
600	 	ion channe	I	-	0.20 - 0.27	
500	Electron channel More boosted			0.32 0.38	0.20 - 0.26 -	
400	_		0.39 0.46	0.31 0.37	0.20	
300		0.44 0.48	0.41 0.44	0.30 0.31	0.19 - 0.20	
200		0.40	0.34	0.23	0.14	
100	- Mo	0.34 ore boo	0.21	0.12		
L	2000	3000	4000	5000	6000	
					m _{W_R} [GeV]	

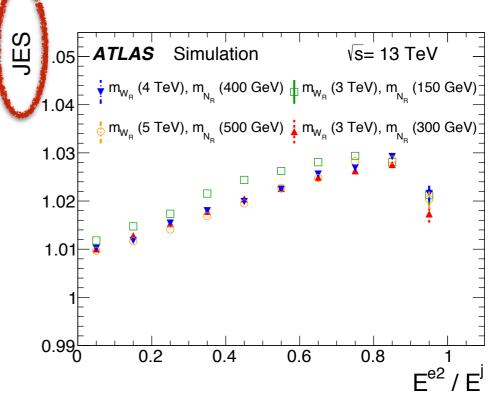
m_{WR} : The discriminating variable for region definition

- m_{WR} Computation in e final state : Invariant mass of j + e1.
- m_{WR} Computation in μ final state : Invariant mass of $j + \mu 1 + \mu 2$.
- Control Region (CR : m_{WR} < 2 TeV) shows reasonable data-mc agreement including statistical uncertainty.
- Signal Region (SR : m_{WR} > 2 TeV).
 A Validation Region (VR) studied with a hard e inside j balanced by a μ to conclude that data can be well predicted by mc (when a hard e inside j).

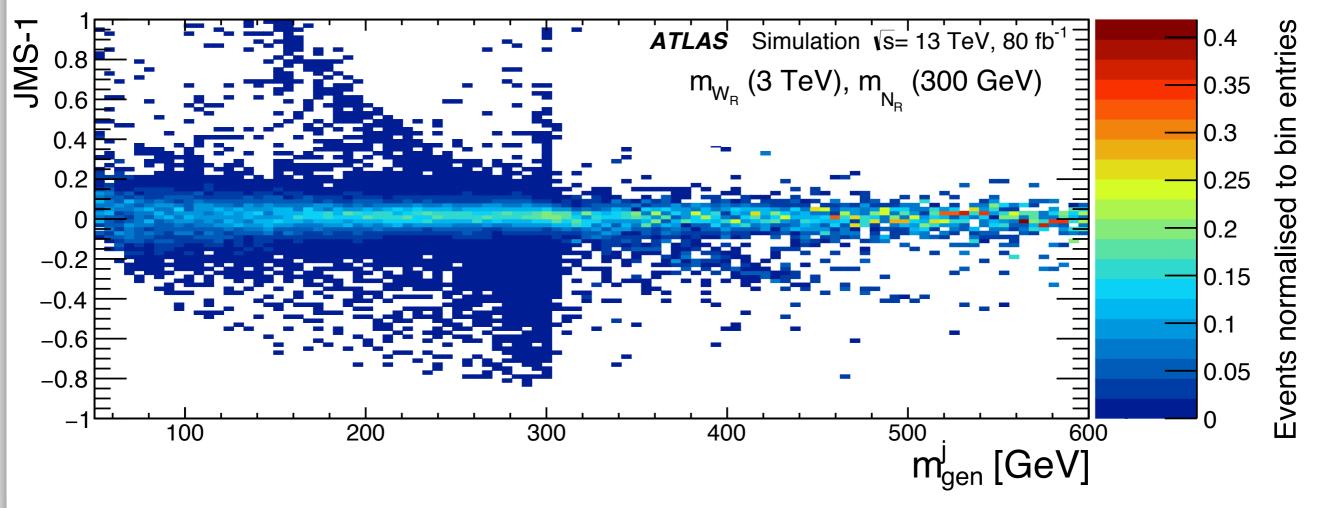


Performance of large radius jet with a hard e inside

 Large radius jet reconstruction in ATLAS based on energy clusters calibrated at hadronic scale.


• Effect of a non-negligible fraction of EM clusters in j investigated in terms of jet energy scale (JES) & jet mass scale (JMS) as a function of ratio of energy of e to the energy of j.

 A weak dependence (within scale expected uncertainty range) concludes no additional correction factor needs to be implemented.


Performance of large radius jet with a hard e inside

- Large radius jet reconstruction in ATLAS based on energy clusters calibrated at hadronic scale.
- Effect of a non-negligible fraction of EM clusters in j investigated in terms of jet energy scale (JES) & jet mass scale (JMS) as a function of ratio of energy of e to the energy of j.
- A weak dependence (within scale expected uncertainty range) concludes no additional correction factor needs to be implemented.

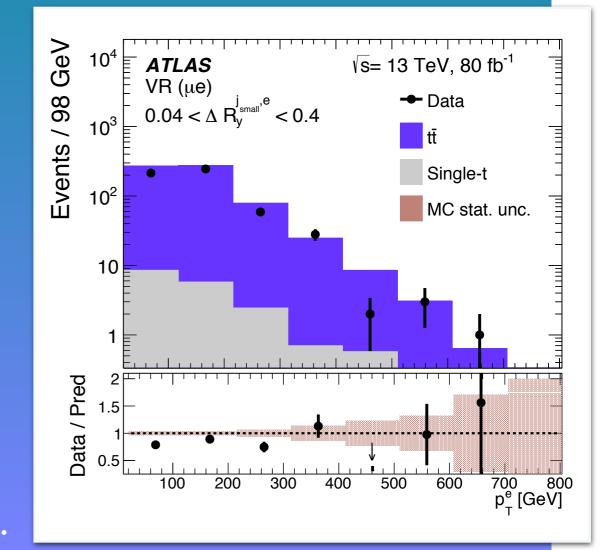
Performance of large radius jet with a hard e inside

• JMS as a function of generator level large radius jet mass shows reasonable behaviour :

Events mostly concentrated at the JMS expected value equal to unity.

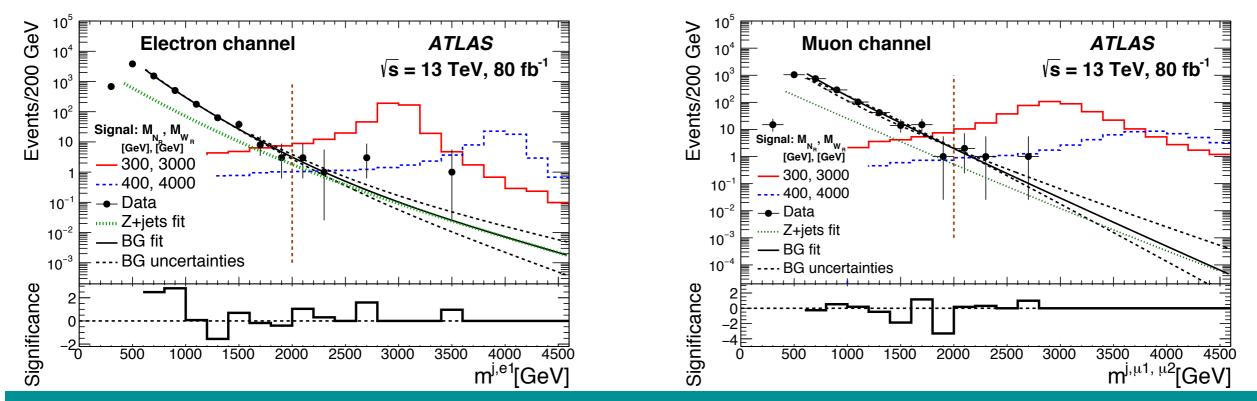
Overlap Removal (OR) Strategy for e close to hadronic activity

 In signal topology e2 always close to a real jet
 => Standard OR in ATLAS removes jet or e if within ΔR < 0.4 : Thus signal efficiency drops off !


=> A modified OR approach followed for e2 :

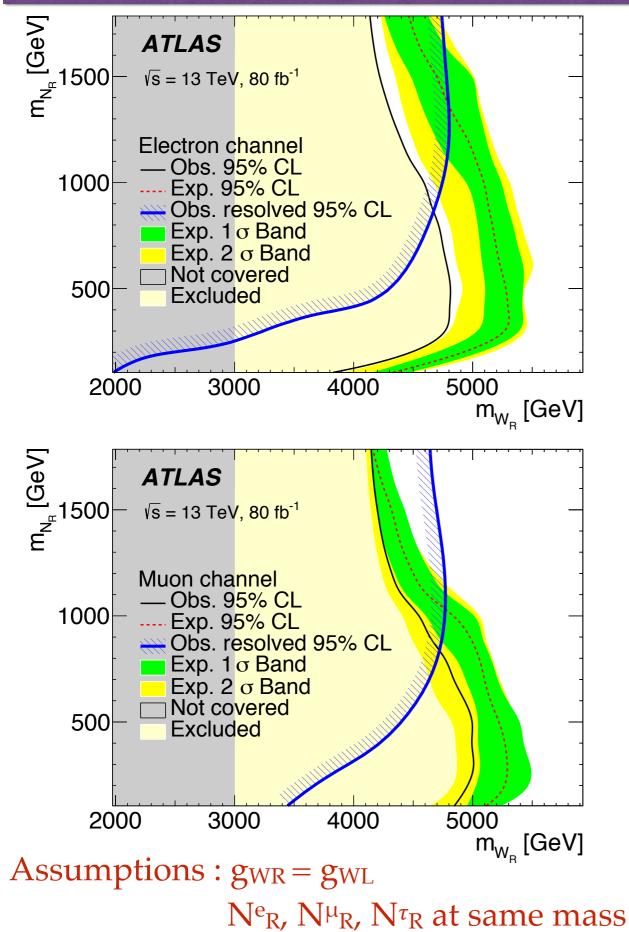
Within $\Delta R \sim 0.04$ of e & jet,

events dominated with a true e mis-reconstructed as a jet. Thus events with $\Delta R > 0.04$ selected.


=> Further standard e efficiency correction factor cannot be used.

Thus in VR additional criterion applied : a <u>b-tagged</u> jet & data-mc comparison done within $0.04 < \Delta R < 0.4$.

Residual disagreement in addition to statistical, theory & b-tagging uncertainties quantified as an additional efficiency correction factor uncertainty. $\frac{10}{10}$


Background Estimation : A fit extrapolation from CR to SR

- A data-driven CR fit (range 600-1800GeV) performed & extrapolated to SR.
- Different steeply falling functional forms tested in CR, best taken with respect to mc closure (in CR & VR) & GOF.
- As Zjets dominates in higher mass range, a Zjets mc fit (range 400-4000GeV) parameters used in resultant fit to data.
- Fitted uncertainty includes extreme variations in SR yield using different fit ranges in CR as well as modelling uncertainty in Zjets mc & statistical uncertainty of fit.

Estimation of limit with a single bin Poissonian counting expt.

12

	Electron Channel	Muon Channel
Signal ($m_{W_R} = 3 \text{ TeV}, m_{N_R} = 150 \text{ GeV}$)	346^{+48}_{-75}	411_{-48}^{+36}
Signal ($m_{W_{\mathrm{R}}} = 3 \text{ TeV}, m_{N_{\mathrm{R}}} = 300 \text{ GeV}$)	471_{-69}^{+42}	429^{+29}_{-40}
Signal ($m_{W_{\mathrm{R}}} = 4 \text{ TeV}, m_{N_{\mathrm{R}}} = 400 \text{ GeV}$)	66^{+6}_{-10}	57^{+4}_{-4}
Expected background	$2.8^{+0.5}_{-0.7}$	$1.9^{+0.5}_{-0.7}$
Observed events	8	4
Significance	2.4σ	1.2σ
<i>p</i> -value	0.0082	0.12

- SR yields from signal, background & systematic uncertainties as a set of nuisance parameters used for likelihood fit to data as a single bin.
- Lower limits on masses of N_R & W_R determined by <u>profiled</u> <u>likelihood test statistic</u> with <u>CLs</u> <u>method</u>.
- Excluded region extends upto m_{WR}
 ~ 4.8 TeV in e & 5 TeV in μ (m_{NR} ~ 0.4-0.5 TeV).

Summary & Outlook

- As LHC energy & luminosity increase extended phase space becoming more suitable to explore massive resonances & thus more crucial to study boosted topologies => boosted heavy neutrinos looked into for the first time!
- Till now as no new physics can be reached in LHC with standard topologies & reconstructed standard objects we need to focus more on unusual topologies & objects which present a challenge to standard reconstruction techniques => a large radius jet with a hard electron inside an example (a common final state for many BSM physics to explore in boosted scenario) that also results into small background.
- Further tuning for this search in order to gain more signal efficiency for near future is underway => mainly working on to bring up a lepton identification menu in dense hadronic environment & in high p_T regime.