Flavour anomalies at the LHC

M. Nardecchia

INFN \& Sapienza University of Rome

30 May 20I9, ICTP, Trieste

Flavour Anomalies

$b \rightarrow s \mu \mu$
(LHCb from 2013)
I) Angular observables in $B \rightarrow K^{*} \mu^{+} \mu^{-} \sim 4 \sigma(?!)$
2) Branching ratios $\gtrsim 3.5 \sigma(?!)$
3) LFU violation in $R_{K} \quad 2.6 \sigma$
4) LFU violation in $R_{K^{*}}$ (2 bins) $2.3 \sigma, 2.6 \sigma$

$$
\text { "clean" only } \approx 4 \sigma
$$

$$
\alpha_{2 f f}=\frac{1}{\Lambda_{R_{k}^{2}}} \bar{s}_{L} \gamma^{\mu} b_{L} \bar{\mu}_{L} \gamma_{\mu} \mu_{L}+h . c \text {. }
$$

$\left|C_{\mu}^{\mathrm{NP}}\right| \gg\left|C_{e}^{\mathrm{NP}}\right|$
$\Lambda_{R_{K}}=31 \mathrm{TeV}$
$b \rightarrow c \tau \nu$
Babar+Belle+LHCb from 2012

SM

$$
\alpha_{e f f}=-\frac{2}{\Lambda_{R_{D}}^{2}} \bar{c}_{L} \gamma^{\mu} b_{L} \bar{\tau}_{L} \gamma_{\mu} \nu_{L}+h . c .
$$

$\left|C_{\tau}^{\mathrm{NP}}\right| \gg\left|C_{\mu}^{\mathrm{NP}}\right|,\left|C_{e}^{\mathrm{NP}}\right|$

$$
\Lambda_{R_{D}}=3.4 \mathrm{TeV}
$$

Bottom-up path

Theoretical input / bias

"Motivated" Models	Address more questions/open problems: naturalness, origin of flavour, renormalizability/accidental symmetries.....
Simplified Models	Introducing explicitly New Physics, in the simplest way as possible
EFT	New Physics in a model independent way

$\Lambda_{R_{K}}=31 \mathrm{TeV}$

$\Lambda_{R_{D}}=3.4 \mathrm{TeV}$

- What is the scale of New Physics?
$\begin{aligned} & \Lambda_{R_{\left.D^{*}\right)}}=3.4 \pm 0.4 \mathrm{TeV}, \\ & \Lambda_{R_{K^{(*)}}}=31 \pm 4 \mathrm{TeV},\end{aligned} \begin{gathered}\text { "Measured" } \\ \text { Fermi constant }\end{gathered}, ~ \frac{1}{\Lambda^{2}}=\frac{C}{M^{2}} \quad \mathrm{C=} \mathrm{(loops)} \mathrm{\times} \mathrm{(couplings)} \mathrm{\times} \mathrm{(flavour)} \mathrm{)} \mathrm{On-shell} \mathrm{effects} \mathrm{@} \mathrm{colliders}$
- What is the scale of New Physics?

$$
\Lambda_{R_{K^{(*)}}}=31 \pm 4 \mathrm{TeV}, \quad \begin{gathered}
\text { "Measured" } \\
\text { Fermi constant }
\end{gathered} \quad \overline{\Lambda^{2}}=\overline{M^{2}}>\text { On-shell effects @ colliders }
$$

- What do we expect? (Worst case scenario)
[Di Luzio, MN, I706.01868]

$$
\begin{gathered}
\mathcal{A}(\psi \psi \rightarrow \psi \psi) \propto s \\
\text { Tree-Level Pertubative } \\
\text { Unitarity criterium } \\
\left|\mathcal{A}_{J=0}\right|<1 / 2
\end{gathered}
$$

$$
\begin{cases}\sqrt{s}_{\max } \equiv \Lambda_{U}=9 \mathrm{TeV} & b \rightarrow c \tau \nu \\ \sqrt{s}_{\max } \equiv \Lambda_{U}=80 \mathrm{TeV} & b \rightarrow s \mu \mu\end{cases}
$$

An old lesson:VV scattering...

$$
\Lambda_{U}=2 \mathrm{TeV}, m_{h}=125 \mathrm{GeV}
$$

- What is the scale of New Physics?
Model dependent part

$$
\begin{aligned}
& \Lambda_{R_{D^{(*)}}}=3.4 \pm 0.4 \mathrm{TeV}, \\
& \Lambda_{R_{K^{(*)}}}=31 \pm 4 \mathrm{TeV},
\end{aligned} \begin{gathered}
\text { "Measured" } \\
\text { Fermi constant }
\end{gathered} \quad \frac{1}{\Lambda^{2}}=\frac{C}{M^{2}} \quad \mathrm{C}=\text { (loops) } \times \text { (couplings) } \times \text { (flavour) }
$$

[Di Luzio, MN, I706.0I868]

$$
\begin{aligned}
& \mathcal{A}(\psi \psi \rightarrow \psi \psi) \propto s \\
& \text { Tree-Level Pertubative } \\
& \text { Unitarity criterium }
\end{aligned} \quad \begin{cases}\sqrt{s}_{\max } \equiv \Lambda_{U}=9 \mathrm{TeV} & b \rightarrow c \tau \nu \\
\sqrt{s}_{\max } \equiv \Lambda_{U}=80 \mathrm{TeV} & b \rightarrow s \mu \mu\end{cases}
$$

$$
\left|\mathcal{A}_{J=0}\right|<1 / 2
$$

An old lesson:VV scattering...

$$
\Lambda_{U}=2 \mathrm{TeV}, m_{h}=125 \mathrm{GeV}
$$

- What do we expect? (Warning: a simplified cartoon!)

$$
b \rightarrow c \tau \nu
$$

$$
b \rightarrow s \mu \mu
$$

SM-EFT regime: tails

- If the New Physics is very heavy the strategy is to look for di-lepton pair at high-pT

$$
\begin{gathered}
\mathcal{L}^{\text {SMEFT }} \supset \frac{C}{M^{2}} \bar{Q} \gamma^{\mu} Q \bar{L} \gamma_{\mu} L \\
\mathcal{A} \propto \frac{E^{2}}{M^{2}} \quad \text { valid when } E \lesssim M
\end{gathered}
$$

SM-EFT regime: tails

- If the New Physics is very heavy the strategy is to look for di-lepton pair at high-pT

$$
\begin{gathered}
\mathcal{L}^{\text {SMEFT }} \supset \frac{C}{M^{2}} \overline{\bar{Q}} \gamma^{\mu} Q \bar{L}_{\gamma_{\mu}} L \\
\mathcal{A} \propto \frac{E^{2}}{M^{2}} \quad \text { valid when } E \lesssim M
\end{gathered}
$$

- NC anomalies [1704.09015,18051। 402$]$

$$
p p \rightarrow \mu^{+} \mu^{-}
$$

No sensitivity at HL-LHC if it is present ONLY

$$
\frac{1}{(30 \mathrm{TeV})^{2}}(\bar{b} \Gamma s)(\bar{\mu} \Gamma \mu)
$$

$p p \rightarrow \tau \nu$

[Greljo, Martin Camalich, Ruiz-Alvarez 1811.07920]

Phys.Rev.Lett. 122 (2019)

- Making use of the ATLAS and CMS mono-tau serches

$$
\begin{aligned}
\mathcal{L}_{\text {LEEFT }} \supset & -\frac{2 V_{k l}}{v^{2}}\left[\left(1+\underline{\epsilon_{L}^{k l \tau}}\right) \bar{\tau} \gamma_{\mu} P_{L} \nu_{\tau} \cdot \bar{u}_{k} \gamma^{\mu} P_{L} d_{l}+\epsilon_{R}^{k l \tau} \bar{\tau} \gamma_{\mu} P_{L} \nu_{\tau} \cdot \bar{u}_{k} \gamma^{\mu} P_{R} d_{l}\right. \\
& \left.+\epsilon_{T}^{k l \tau} \bar{\tau} \sigma_{\mu \nu} P_{L} \nu_{\tau} \cdot \bar{u}_{k} \sigma^{\mu \nu} P_{L} d+\epsilon_{S_{L}}^{k l \tau} \bar{\tau} P_{L} \nu_{\tau} \cdot \bar{u}_{k} P_{L} d_{l}+\epsilon_{S_{R}}^{k l \tau} \bar{\tau} P_{L} \nu_{\tau} \cdot \bar{u}_{k} P_{R} d_{l}\right]+ \text { h.c. }
\end{aligned}
$$

SIMPLIFIED MODELS

Vertical (gauge) structure

- Fits to data suggest a sizeable (most likely dominant) contribution of the New Physics to left currents for both quarks and leptons

$$
C_{S}\left(\bar{Q}_{L}^{i} \gamma^{\mu} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} L_{L}^{\beta}\right)+C_{T}\left(\bar{Q}_{L}^{i} \gamma^{\mu} \sigma^{a} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} L_{L}^{\beta}\right)
$$

\qquad

Vertical (gauge) structure

- Fits to data suggest a sizeable (most likely dominant) contribution of the New Physics to left currents for both quarks and leptons

$$
C_{S}\left(\bar{Q}_{L}^{i} \gamma^{\mu} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} L_{L}^{\beta}\right)+C_{T}\left(\bar{Q}_{L}^{i} \gamma^{\mu} \sigma^{a} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} L_{L}^{\beta}\right)
$$

- Collider implication: Quantum numbers of tree level mediators restricted

Mediator	Spin	SM irrep	c_{1} / c_{3}	$R_{D^{(*)}}$	$R_{K^{(*)}}$	No $d_{i} \rightarrow d_{j} \nu \bar{\nu}$
Z^{\prime}	1	$(1,1,0)$	∞	\times	\checkmark	\times
V^{\prime}	1	$(1,3,0)$	0	\checkmark	\checkmark	\times
S_{1}	0	$(\overline{3}, 1,1 / 3)$	-1	\checkmark	\times	\times
S_{3}	0	$(\overline{3}, 3,1 / 3)$	3	\checkmark	\checkmark	\times
U_{1}	1	$(3,1,2 / 3)$	1	\checkmark	\checkmark	\checkmark
U_{3}	1	$(3,3,2 / 3)$	-3	\checkmark	\checkmark	\times

Horizontal (flavour) structure

- Considering the whole set of data (neutral and charged currents), a possible link with the SM flavour structure is emerging

$$
\begin{array}{llll}
b \rightarrow c \tau \nu & 3_{q} \rightarrow 2_{q} 3_{\ell} 3_{\ell} & \text { SMVS NP } & \left|C_{\tau}^{\mathrm{NP}}\right| \gg\left|C_{\mu}^{\mathrm{NP}}\right| \gg\left|C_{e}^{\mathrm{NP}}\right| \\
b \rightarrow s \mu \mu & 3_{q} \rightarrow 2_{q} 2_{\ell} 2_{\ell} & \text { A link? } & \left|Y_{\tau}^{S M}\right| \gg\left|Y_{\mu}^{S M}\right| \gg\left|Y_{e}^{S M}\right|
\end{array}
$$

- Motivated flavour ansatz in the quark sector (MFV, U(2), Partial Compositeness, FroggatNielsen) predicts dominant coupling of the New Physics with the third family.

$$
\frac{\bar{c} \gamma^{\mu} b}{\bar{t} \gamma^{\mu} b}=\mathcal{O}\left(\lambda^{2}\right) \quad, \quad \frac{\bar{s} \gamma^{\mu} b}{\bar{b} \gamma^{\mu} b}=\mathcal{O}\left(\lambda^{2}\right) \quad \lambda=0.23 \quad \text { (Cabibbo angle) }
$$

Horizontal (flavour) structure

- Considering the whole set of data (neutral and charged currents), a possible link with the SM flavour structure is emerging

$$
\begin{array}{llll}
b \rightarrow c \tau \nu & 3_{q} \rightarrow 2_{q} 3_{\ell} 3_{\ell} & \text { SMVS NP } & \left|C_{\tau}^{\mathrm{NP}}\right| \gg\left|C_{\mu}^{\mathrm{NP}}\right| \gg\left|C_{e}^{\mathrm{NP}}\right| \\
b \rightarrow s \mu \mu & 3_{q} \rightarrow 2_{q} 2_{\ell} 2_{\ell} & \text { A link? } & \left|Y_{\tau}^{S M}\right| \gg\left|Y_{\mu}^{S M}\right| \gg\left|Y_{e}^{S M}\right|
\end{array}
$$

- Motivated flavour ansatz in the quark sector (MFV, U(2), Partial Compositeness, FroggatNielsen) predicts dominant coupling of the New Physics with the third family.

$$
\frac{\bar{c} \gamma^{\mu} b}{\bar{t} \gamma^{\mu} b}=\mathcal{O}\left(\lambda^{2}\right) \quad, \quad \frac{\bar{s} \gamma^{\mu} b}{\bar{b} \gamma^{\mu} b}=\mathcal{O}\left(\lambda^{2}\right) \quad \text { (Cabibbo angle) }
$$

- Collider implications
- NP getting closer $\left\{\begin{array}{ll}M \lesssim 3 \mathrm{TeV} & b \rightarrow c \tau \nu \\ M \lesssim 20 \mathrm{TeV} & b \rightarrow s \mu \mu\end{array} \quad \begin{array}{l}\text { Tree-Level Pertubative } \\ \text { Unitarity criterium }\end{array}\right.$
- Better to look for resonant decays of the mediators into SM fermions of the third family

Where to look

$\left.\begin{array}{|c|c|c|c|c|c|c|}\hline \text { Simplified Model } & \text { Spin } & \text { SM irrep } & c_{1} / c_{3} & R_{D^{(*)}} & R_{K^{(*)}} & \text { No } d_{i} \rightarrow d_{j} \nu \bar{\nu} \\ \hline \hline Z^{\prime} & 1 & (1,1,0) & \infty & \times & \checkmark & \times \\ V^{\prime} & 1 & (1,3,0) & 0 & \checkmark & \checkmark & \times \\ S_{1} & 0 & (3,1,1 / 3) & -1 & \checkmark & \times & \times \\ S_{3} & 0 & (\overline{3}, 3,1 / 3) & 3 & \checkmark & \checkmark & \times \\ U_{1} & 1 & (3,1,2 / 3) & 1 & \checkmark & \checkmark & \checkmark \\ U_{3} & 1 & (3,3,2 / 3) & -3 & \checkmark & \checkmark & \times \\ \hline\end{array}\right\}$ Colourless mediators
I) Resonance searches for charged current anomalies

- Colourless mediator $\mathrm{Z}^{\prime}+\mathrm{V}^{\prime}$ not viable (excluded already $Z^{\prime} \rightarrow \tau \tau$)
- Vector Leptoquark, UI, decaying into SM fermions of the third family
- Scalar Leptoquarks, tuning+SI +S3, decaying into SM fermions of the third family
- More complicated linear combinations (and parameter adjustments) can be thought

2) Resonance searches for neutral current anomalies only (and no flavour bias)

- Z' to muons
- Leptoquark in final states with muons
- One loop mediators also viable..

Leptoquarks

- Working assumption: decays into third family. Relevant parameters: LQ coupling and mass:

Leptoquarks

- Working assumption: decays into third family. Relevant parameters: LQ coupling and mass:

Vector LQ model for B-anomalies

- HL-LHC and HE-LHC report [18|2.07638]
- Two decay channels: bottom-tau, top-neutrino. $\operatorname{SU}(2)$ fix the $B R$ to be equal
- Top-neutrino: see N.Vignaroli I808.I0309
- Message: LQ survives at the LHC and HL-LHC in large part of the parameter space...

3rd gen. Leptoquarks @ LHC

Best candidates to

 address both anomalies1706.07808

Working assumption: largest couplings to third generation fermions, couplings to lighter ones are CKM (flavour) suppressed.

$S_{1}=(\overline{3}, 1,1 / 3)$ $S_{3}=(\overline{3}, 3,1 / 3)$

$$
\begin{aligned}
& \text { 3) } \\
& \text { 3) }
\end{aligned}
$$

3)

3rd gen. Leptoquarks @ LHC

Best candidates to

 address both anomalies1706.07808

Working assumption: largest couplings to third generation fermions, couplings to lighter ones are CKM (flavour) suppressed.

$S_{1}=(\overline{3}, 1,1 / 3)$ $S_{3}=(\overline{3}, 3,1 / 3)$

[CLIC,Yellow report, Buttazzo, Greljo, Marzocca, Nardecchia]

Problems Beyond the naive mediator(s)

I) Direct searches.

$$
\begin{gathered}
\alpha_{y f}=-\frac{2}{\Lambda_{R_{D}}} \bar{c}_{L} \gamma^{\mu} b_{L} \bar{\tau}_{L} \gamma_{\mu} \nu_{L}+h . c . \rightarrow\left(\frac{1}{1 \mathrm{TeV}}\right)^{2} \bar{b}_{L} \gamma^{\mu} b_{L} \bar{\tau}_{L} \gamma^{\mu} \tau_{L} \\
\Lambda_{R_{D}}=3.4 \mathrm{TeV}
\end{gathered}
$$

[Faroughy,Greljo,Kamenik, 1609.07138]
2) Radiative contraints

$$
\begin{gathered}
\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right)\left(\bar{L}_{L} \gamma_{\mu} L_{L}\right) \rightarrow\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)\left(\bar{L}_{L} \gamma_{\mu} L_{L}\right) \\
\delta g_{\tau_{L}}^{Z}, \delta g_{\nu_{\tau}}^{Z}, \delta g_{\tau}^{W}, \mathcal{B}(\tau \rightarrow 3 \mu)
\end{gathered}
$$

[Feruglio, Paradisi, Pattori,
1606.00524, I705.00929]
3) FCNC with neutrinos.

$$
\begin{gathered}
\mathcal{B}\left(B \rightarrow K^{(*)} \nu \nu\right) \approx \mathcal{B}\left(B \rightarrow K^{(*)} \nu_{\tau} \nu_{\tau}\right) \gg \mathcal{B}\left(B \rightarrow K^{(*)} \nu \nu\right)_{S M} \\
\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \nu \nu\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} \nu \nu\right)_{S M}} \lesssim 4
\end{gathered}
$$

The Vector Leptoquark

Simplified Model	Spin	SM irrep	c_{1} / c_{3}	$R_{D^{(*)}}$	$R_{K^{(*)}}$	No $d_{i} \rightarrow d_{j} \nu \bar{\nu}$
Z^{\prime}	1	$(1,1,0)$	∞	\times	\checkmark	\times
V^{\prime}	1	$(1,3,0)$	0	\checkmark	\checkmark	\times
S_{1}	0	$(\overline{3}, 1,1 / 3)$	-1	\checkmark	\times	\times
S_{3}	0	$(\overline{3}, 3,1 / 3)$	3	\checkmark	\checkmark	\times
U_{1}	1	$(3,1,2 / 3)$	1	\checkmark	\checkmark	\checkmark
U_{3}	1	$(3,3,2 / 3)$	-3	\checkmark	\checkmark	\times

- Remarkably there is a unique solution, if we consider a single mediator

A clear winner! $\quad U_{\mu}=(3,1,2 / 3)$

[Buttazzo, Greljo, Isidori Marzocca 1706.07808]

The Vector Leptoquark

Simplified Model	Spin	SM irrep	c_{1} / c_{3}	$R_{D^{(*)}}$	$R_{K^{(*)}}$	No $d_{i} \rightarrow d_{j} \nu \bar{\nu}$
Z^{\prime}	1	$(1,1,0)$	∞	\times	\checkmark	\times
V^{\prime}	1	$(1,3,0)$	0	\checkmark	\checkmark	\times
S_{1}	0	$(\overline{3}, 1,1 / 3)$	-1	\checkmark	\times	\times
S_{3}	0	$(\overline{3}, 3,1 / 3)$	3	\checkmark	\checkmark	\times
U_{1}	1	$(3,1,2 / 3)$	1	\checkmark	\checkmark	\checkmark
U_{3}	1	$(3,3,2 / 3)$	-3	\checkmark	\checkmark	\times

- Remarkably there is a unique solution, if we consider a single mediator

$$
\text { A clear winner! } \quad U_{\mu}=(3,1,2 / 3)
$$

- A spin I state calls for a UV completion. This is not an academic question, collider searches are
 dominated by the phenomenology of the extra states that emerge with the leptoquark.

SU(4) Pati-Salam

- Quantum numbers of the leptoquark known, easiest option: Pati-Salam

$$
\begin{aligned}
& G_{P S}=S U(4)_{P S} \times S U(2)_{L} \times S U(2)_{R} \\
& \\
& \quad G_{P S} \rightarrow G_{S M}
\end{aligned}
$$

SU(4) Pati-Salam

- Quantum numbers of the leptoquark known, easiest option: Pati-Salam

$$
\begin{aligned}
& G_{P S}=S U(4)_{P S} \times S U(2)_{L} \times S U(2)_{R} \\
& G_{P S} \rightarrow G_{S M} \\
& (15=8+3+\overline{3}+1) \quad \frac{g_{s}}{\sqrt{2}} U_{\mu} \beta_{i j} \bar{Q}^{i} \gamma^{\mu} L^{j}
\end{aligned}
$$

- A problem: bounds from indirect searches

$$
M_{U} \gtrsim 100 \mathrm{TeV}
$$

$$
M_{U} \lesssim 2 \mathrm{TeV}
$$

(from the anomalies)

- Another problem: bounds from direct searches of the Z^{\prime}, abundantly produced by Drell-Yan processes
- After all Pati-Salam was introduced in the context of GUTs.....

The 432I model

- We need two ingredients: an enlarged gauge structure and extra matter fields

\[

\]

- Extra gauge bosons don't decouple, for example in some limit:

$$
3 M_{U}^{2}=M_{g^{\prime}}^{2}+2 M_{Z^{\prime}}^{2}
$$

The 432I model

- We need two ingredients: an enlarged gauge structure and extra matter fields

$$
\begin{gathered}
G=S U(4) \times S U(3)^{\prime} \times S U(2)_{L} \times U(1)^{\prime} \\
\downarrow\left\langle\Omega_{3}\right\rangle,\left\langle\Omega_{1}\right\rangle \\
G_{S M}=S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}
\end{gathered}
$$

New states from the breaking:
I) A leptoquark
$M_{U}=\frac{1}{2} g_{4} \sqrt{v_{1}^{2}+v_{3}^{2}}$,
2) A color octet
$M_{g^{\prime}}=\frac{1}{\sqrt{2}} \sqrt{g_{4}^{2}+g_{3}^{2}} v_{3}$,
3) A SM singlet $\quad M_{Z^{\prime}}=\frac{1}{2} \sqrt{\frac{3}{2}} \sqrt{g_{4}^{2}+\frac{2}{3} g_{1}^{2}} \sqrt{v_{1}^{2}+\frac{1}{3} v_{3}^{2}}$.

- Extra gauge bosons don't decouple, for example in some limit:
- Field content

$$
3 M_{U}^{2}=M_{g^{\prime}}^{2}+2 M_{Z^{\prime}}^{2}
$$

Field	SU(4)	$S U(3)^{\prime}$	$S U(2)_{L}$	$U(1)^{\prime}$	
$q_{L}^{\prime \prime}$	1	3	2	1/6)
$u_{R}^{\prime \prime}$	1	3	1	2/3	
$d_{R}^{\prime \prime}$	1	3	1	$-1 / 3$	would-be SM states
$\ell_{L}^{\prime i}$	1	1	2	-1/2	
$e_{R}^{\prime \prime}$	1	1	1	-1	
Ψ_{L}^{i}	4	1	2	0	$\}$ vector-like states
Ψ_{R}^{i}	4	1	2	0	$\int(\mathrm{Q}+\mathrm{L})$
H	1	1	2	1/2	
Ω_{3}	$\overline{4}$	3	1	1/6	symmetry breaking
Ω_{1}	$\overline{4}$	1	1	$-1 / 2$	

- Color octet and Z' are the most important states

Benchmark spectrum

Colour octet vector at the LHC

- We are looking for
- Background fitted to data

- Exclusion limit are reported with benchmark up to

$$
\frac{\Gamma}{m} \lesssim 15 \%
$$

- In models aiming at explaining charged current anomalies,large widths are expected

Colour octet vector at the LHC

- We are looking for
- Background fitted to data

- Exclusion limit are reported with benchmark up to

$$
\frac{\Gamma}{m} \lesssim 15 \%
$$

- In models aiming at explaining charged current anomalies,large widths are expected
- Very strong bounds

Other channels of interest

- Depending on the value of the parameters/models, it is important to consider also:

$$
\left\{\begin{array}{l}
g^{\prime} \rightarrow t \bar{t} \\
g^{\prime} \rightarrow b \bar{b} \\
Z^{\prime} \rightarrow t \bar{t} \\
Z^{\prime} \rightarrow b \bar{b} \\
Z^{\prime} \rightarrow \tau \tau
\end{array}\right.
$$

Final states containing quarks and leptons of the third family: a correlation with the flavour structure hinted by the anomalies.

Top is present because of $\mathrm{SU}(2)$ gauge structure.

Other channels of interest

- Depending on the value of the parameters/models, it is important to consider also:

$$
\left\{\begin{array}{l}
g^{\prime} \rightarrow t \bar{t} \\
g^{\prime} \rightarrow b \bar{b} \\
Z^{\prime} \rightarrow t \bar{t} \\
Z^{\prime} \rightarrow b \bar{b} \\
Z^{\prime} \rightarrow \tau \tau
\end{array}\right.
$$

Final states containing quarks and leptons of the third family: a correlation with the flavour structure hinted by the anomalies.

Top is present because of $S U(2)$ gauge structure.

- This holds also in strongly coupled models. As before states don't decouple and large widths are expected. $M_{U}=M_{g^{\prime}}=M_{Z^{\prime}}$

- Fair to say that all the models are under pressure by various simultaneous constraints (EW and FCNC observables, direct searches)

NEUTRAL CURRENT (ONLY)

Why Neutral Current only?

- A couple of (personal) prejudices...
I) The very low NP scale hinted by the anomalies in charged currents is problematic

- However, models can be constructed... separately, bounds can be satisfied. The interplay of various constraints is very important (some models, seems naively ok but...)
- Even if allowed, large couplings are required (calculability is lost?)

Why Neutral Current only?

- A couple of (personal) prejudices...
I) The very low NP scale hinted by the anomalies in charged currents is problematic

- However, models can be constructed... separately, bounds can be satisfied. The interplay of various constraints is very important (some models, seems naively ok but...)
- Even if allowed, large couplings are required (calculability is lost?)

2) Models addressing the anomalies (in CC) do not fit well in frameworks that address the issue of the naturalness problem of the EW scale

Viable attempts in particular in the context of the composite Higgs framework (SUSY is more problematic)

Models for NC anomalies $b \rightarrow s \mu \mu$

$\frac{\Delta_{b s} \Delta_{\mu \mu}}{m_{Z^{\prime}}^{2}} \approx \frac{1}{(30 \mathrm{TeV})^{2}}$
$\frac{\lambda_{b \mu} \lambda_{s \mu}}{m_{\Pi}^{2}} \approx \frac{1}{(30 \mathrm{TeV})^{2}}$

Z' at HL/HE-LHC

- Assumption I: Left currents $\left(\bar{b}_{L} \gamma^{\mu} s_{L}\right)\left(\bar{\mu} \gamma_{\mu} \mu_{L}\right)$
- Assumption 2: Narrow Width (fair coverage of weakly coupled realisations) $\Gamma_{Z^{\prime}} / M_{Z^{\prime}}<10 \%$
- Assumption 3: "Pessimism" (making few assumptions as possible)

$$
\mathcal{L}_{[33 \mu \mu]}=Z_{\rho}^{\prime}\left(g_{L}^{q} \bar{Q}_{3} \gamma^{\rho} Q_{3}+g_{L}^{\mu \mu} \bar{L}_{\mu} \gamma^{\rho} L_{\mu}\right)
$$

Z^{\prime} at $\mathrm{HL} / \mathrm{HE}$-LHC

- Assumption I: Left currents $\left(\bar{b}_{L} \gamma^{\mu} s_{L}\right)\left(\bar{\mu} \gamma_{\mu} \mu_{L}\right)$
- Assumption 2: Narrow Width (fair coverage of weakly coupled realisations) $\Gamma_{Z^{\prime}} / M_{Z^{\prime}}<10 \%$
- Assumption 3: "Pessimism" (making few assumptions as possible)
- Extrapolate current I 3 TeV di-muon searches
[ATLAS 1607.03669]

$$
\mathcal{L}_{[33 \mu \mu]}=Z_{\rho}^{\prime}\left(g_{L}^{q} \bar{Q}_{3} \gamma^{\rho} Q_{3}+g_{L}^{\mu \mu} \bar{L}_{\mu} \gamma^{\rho} L_{\mu}\right)
$$

- Room left after HL-HE for the naive model
- Full coverage of the "motivated" [33mumu] model!
- Remember that these are just 2 (useful) benchmarks.

Leptoquarks for NC anomalies

Figure 6. Example Feynman diagrams of LQ production at a hadron collider followed by subsequent decay of each into μj.

- Extrapolation from [CMS-PAS-EXO--12-041]
- Same hypothesis as before
- Take home message:
- Pair production, $p p \rightarrow L Q L Q \rightarrow \mu^{+} \mu^{-} j j$ $5 \mathrm{TeV} \quad 12 \mathrm{TeV}$ 40 TeV
33 TeV
- Single production, $p p \rightarrow L Q \rightarrow \mu^{+} \mu^{-} j$

		21 TeV	40 TeV
	絲絲		$\Gamma_{z_{z} / M_{z}>0.1}$
LQ coupling strength			

Loop induced anomalies

$$
\frac{y^{4}}{16 \pi^{2}} \frac{1}{m_{N P}^{2}} \approx \frac{1}{(30 \mathrm{TeV})^{2}}
$$

$$
\mathcal{L}=Z_{\alpha}^{\prime}\left[\bar{\mu} \gamma^{\alpha}\left(\epsilon_{L}^{\mu \mu} P_{L}+\epsilon_{R}^{\mu \mu} P_{R}\right) \mu+\epsilon_{R}^{t t} \bar{t} \gamma^{\alpha} P_{R} t\right]
$$

- Loop induced models: in general quite good discovery prospects at HL-HE LHC

(No) Conclusions

- We are waiting for the confirmation/disproval of the flavor anomalies. By the start of HLLHC the situation will be clarified.
- Current anomalies in B decays have a simple, coherent and consistent interpretation at the effective field theory level.
- Charged current and neutral current anomalies point (naively) to different New Physics scale. No no-lose theorem at the LHC can be formulated using perturbative unitarity arguments
- Charged Currents: leptoquarks seem to be preferred as mediators. Full models are needed, first signal at high pT could arise from other sectors
- [Fair to say that models addressing the CC anomalies are under pressure by various simultaneous constraints (EW and FCNC observables, direct searches)]
- Neutral Currents @ tree level: more options are viable, simplified models under minimal assumptions can be constructed. Z ' and leptoquarks represents good physics cases for $\mathrm{HL} / \mathrm{HE}$.
- Neutral Currents @ I-loop: an open possibility, New Physics has to be light and with large couplings to SM fermion. High pT aspects are more model dependent.

Backup

	Field	$S U(4)$	$S U(3)^{\prime}$	$S U(2)_{L}$	$U(1)^{\prime}$
0 \mathbf{o} \mathbf{E} $\mathbf{6}$	$q_{L}^{\prime \prime}$	1	3	2	1/6
	$u_{R}^{\prime i}$	1	3	1	2/3
	$d_{R}^{\prime \prime}$	1	3	1	$-1 / 3$
	$\ell_{L}^{\prime i}$	1	1	2	$-1 / 2$
	$e_{R}^{\prime \prime}$	1	1	1	-1
	Ψ_{L}^{i}	4	1	2	0
	Ψ_{R}^{i}	4	1	2	
	H	1	1	2	1/2
	Ω_{3}	$\overline{4}$	3	1	1/6
	Ω_{1}	$\overline{4}$	1	1	-1/2

In the interaction basis
$\mathcal{L}_{L} \supset \frac{g_{4}}{\sqrt{2}} \bar{Q}_{L}^{\prime} \gamma^{\mu} L_{L}^{\prime} U_{\mu}+$ h.c.
$+\frac{g_{4} g_{s}}{g_{3}}\left(\bar{Q}_{L}^{\prime} \gamma^{\mu} T^{a} Q_{L}^{\prime}-\frac{g_{3}^{2}}{g_{4}^{2}} \bar{q}_{L}^{\prime} \gamma^{\mu} T^{a} q_{L}^{\prime}\right) g_{\mu}^{\prime a}$
$+\frac{1}{6} \frac{\sqrt{3} g_{4} g_{Y}}{\sqrt{2} g_{1}}\left(\bar{Q}_{L}^{\prime} \gamma^{\mu} Q_{L}^{\prime}-\frac{2 g_{1}^{2}}{3 g_{4}^{2}} \bar{q}_{L}^{\prime} \gamma^{\mu} q_{L}^{\prime}\right) Z_{\mu}^{\prime}$
$-\frac{1}{2} \frac{\sqrt{3} g_{4} g_{Y}}{\sqrt{2} g_{1}}\left(\bar{L}_{L}^{\prime} \gamma^{\mu} L_{L}^{\prime}-\frac{2 g_{1}^{2}}{3 g_{4}^{2}} \bar{\ell}_{L}^{\prime} \gamma^{\mu} \ell_{L}^{\prime}\right) Z_{\mu}^{\prime}$

- Would-be SM fermions in the absence of mixing with Ψ
- Three copies
- Three (min. two) copies of vector-like fermions

Large left-handed mixing matrix [Explains the dominance of left-handed interactions at low energies]

Suppressed couplings to light generations in the limit $g_{4} \gg g_{1}, g_{3}$
[Diaz, Schmaltz, Zhong], 1706.05033

Direct Searches (gauge sector)

- Leptoquark, pair production by QCD interactions, decay into third family fixed by the anomaly:

$$
\begin{aligned}
& \left\{\begin{array}{l}
U \rightarrow b \tau^{+}, \quad \mathrm{BR}=50 \% \\
U \rightarrow t \bar{\nu}, \quad \mathrm{BR}=50 \%
\end{array}\right. \\
& \text { (CMS search for spin-0 I703.03995) } \\
& \text { (recast for spin-I in 1706.01868) } \\
& \text { (see also I706.05033) }
\end{aligned}
$$

$m_{U}>1.3 \mathrm{TeV}$ leptoquark mass sets the overall scale

- Z', dangerous Drell-Yann processes suppressed because coupling to the first family is reduced due to small U(I)' coupling. $\sim g_{Y} / g_{4}$
- g', coupling to the first family given by the $\operatorname{SU}(3)$ ' factor $\sim g_{s} / g_{4}$
 resonant dijets search particularly sensitive (ATLAS I703.09127)

Need large g4...

- However bump searches loose in sensitivity when the width-to-mass ratio is too large, in our case the decay width is naturally large because of the decay into heavy quarks

$$
\frac{\Gamma}{m} \lesssim 15 \% \quad \text { from exp.analysis } \quad \frac{\Gamma_{g^{\prime}}}{m_{g^{\prime}}}=28 \% \text { our benchmark }
$$

Composite Higgs Framework

- Being PGB, Higgs and Leptoquarks are lighter than the other resonances coming from the strong sector
- SM fermion masses are generated by the mechanism of partial compositeness

$$
|S M\rangle=\cos \epsilon|f\rangle+\sin \epsilon|\mathcal{O}\rangle
$$

- BSM Flavour violation regulated by the same mechanism
- Naturalness (...)

Partial Compositeness in CH models

- Yukawa sector:

$$
\begin{aligned}
& \mathcal{L}_{\text {elem }}=i \bar{f} \gamma^{\mu} D_{\mu} f \\
& \mathcal{L}_{\text {comp }}=\mathcal{L}_{\text {comp }}\left(g_{\rho}, m_{\rho}, H\right) \\
& \mathcal{L}_{\text {mix }}=\epsilon_{L} f_{L} \mathcal{O}_{L}+\epsilon_{L} f_{R} \mathcal{O}_{R}+h . c .
\end{aligned}
$$

$$
Y^{i j}=c_{i j} \epsilon_{L}^{i} \epsilon_{R}^{j} g_{\rho} \quad \longrightarrow \quad Y^{i j} \sim \epsilon_{L}^{i} \epsilon_{R}^{j} g_{\rho}
$$

- Flavor violation beyond the CKM one is generated:

Flavour Violation \& Leptoquarks

- Comment later about the flavour physics associated with m_{ρ}
- Relevant Lagrangian

$$
\mathcal{L}=\mathcal{L}_{S M}+\left(D^{\mu} \Pi\right)^{\dagger} D_{\mu} \Pi-M^{2} \Pi^{\dagger} \Pi+\lambda_{i j} \bar{q}_{L j}^{c} i \tau_{2} \tau_{a} \ell_{L i} \Pi+\text { h.c. }
$$

q_{L}
Cep
П

Leptons
$\sqrt{Y_{e}}$

Quarks

$\lambda_{i j} /\left(c_{i j} g_{\rho}^{1 / 2} \epsilon_{3}^{q}\right)$	$j=1$	$j=2$	$j=3$
$i=1$	1.92×10^{-5}	8.53×10^{-5}	1.67×10^{-3}
$i=2$	2.80×10^{-4}	1.24×10^{-3}	2.43×10^{-2}
$i=3$	1.16×10^{-3}	5.16×10^{-3}	0.101

- c are $\mathrm{O}(\mathrm{I})$ parameters
- Only 3 fundamental parameters reduced to a single

$$
\left(g_{\rho}, \epsilon_{3}^{q}, M\right) \rightarrow \sqrt{g_{\rho}} \epsilon_{3}^{q} / M
$$ combination in all the flavour observable!

MSSM (ask me)

- LFU in the MSSM without R-Parity Violation: loop level

D'Amico et al, I704.05438

- Lepton universality is broken by slepton masses $m_{\tilde{e}} \gg m_{\tilde{\mu}}$
- Box diagrams are numerically small, very light particles in the loop
- No free parameter on the Feynman vertices: EW couplings
- Direct searches (LHC+LEP) give strong constraints, probably no holes left (but a careful analysis is required)
- MSSM wit R-Parity Violation: basically SM + some specific leptoquark

The LHCb results with large effect in muons suggest an extensions of the MSSM

