Status of CLIC and Muon Colliders

Daniel Schulte

Introduction

CLIC and muon colliders are both lepton colliders

- Both aim at high energy
- CLIC is being developed by a global collaboration hosted at CERN
- CLIC is being considered as the next project for Europe, in competition with other options
- Muon collider activities do not have a formal framework right now
 - there has been one in the US a few years ago
 - but some activity at INFN and in the UK
- It is being considered whether muon collider R&D should be increased in Europe

Documents

Submissions, PIP and physics case : <u>https://clic.cern/european-strategy</u> More about CLIC: <u>https://clic.cern</u>

CLIC delivered a CDR in 2012

The CERN Laboratory Directors Group appointed in September 2017 Jean Pierre Delahaye, CERN, Marcella Diemoz, INFN, Italy, Ken Long, Imperial College, UK, Bruno Mansoulie, IRFU, France, Nadia Pastrone, INFN, Italy (chair), Lenny Rivkin, EPFL and PSI, Switzerland, Daniel Schulte, CERN, Alexander Skrinsky, BINP, Russia, Andrea Wulzer, EPFL and CERN

to prepare the Input Document to the European Strategy Update "Muon Colliders," <u>arXiv:1901.06150</u>

No CDR exists, even in the US

Information can be found in different journal publications and talks

CLIC Collaboration

Lepton Colliders at High Energies

accelerating cavities

CLIC at 380 GeV

High field => NC structures High stored energy => high losses => short, high power pulses

BC2

300 m

CLIC Staging Scenario

Stage	\sqrt{s} [TeV]	$\mathscr{L}_{\mathrm{int}}$ [ab ⁻¹]
1	0.38 (and 0.35)	1.0
2	1.5	2.5
3	3.0	5.0

Ramp up in first years

• 10%, 30%, 60% at 380 GeV

• 25%, 75% for 1.5 and 3 TeV

Operation ratio

• (50:50) at 380 GeV

• (80:20) at 1.5 TeV and 3 TeV

CLIC at 3 TeV

Key Parameters

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000
Repetition frequency	$f_{\rm rep}$	Hz	50	50	50
Number of bunches per train	n_b		352	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Pulse length	$ au_{ m RF}$	ns	244	244	244
Accelerating gradient	G	MV/m	72	72/100	72/100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.5	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.9	1.4	2
Total integrated luminosity per year	$\mathscr{L}_{\mathrm{int}}$	fb^{-1}	180	444	708
Main linac tunnel length		km	11.4	29.0	50.1
Number of particles per bunch	Ν	10 ⁹	5.2	3.7	3.7
Bunch length	σ_z	μm	70	44	44
IP beam size	σ_x/σ_y	nm	149/2.9	$\sim 60/1.5$	$\sim 40/1$
Normalised emittance (end of linac)	ϵ_x/ϵ_y	nm	900/20	660/20	660/20
Final RMS energy spread		%	0.35	0.35	0.35
Crossing angle (at IP)		mrad	16.5	20	20

Accelerating Structures and Gradient

Accelerating structures are tested in specific test stand

• Limit is the breakdown rate

Important production of normal conducting structure in many places

• e.g. SwissFEL (at C-band) demonstrated high precision production

X-band Systems and facilities

- XBoxes at CERN
- (NEXTEF KEK)
- Test stand at Tsinghua
- Frascati
- NLCTA SLAC
- Linearizers at Electra, PSI, Shanghai and Daresbury
- Deflectors at SLAC, Shanghai, PSI and Trieste
- NLCTA
- Smart*Light
- FLASH

Drive Beam Demonstration (CTF3)

CLIC and Muon Colliders, Trieste 2019

Drive Beam Results

Luminosity

Can re-write normal luminosity formula

$$\mathcal{L} = H_D \frac{N^2}{4\pi\sigma_x\sigma_y} n_b f_r$$

$$\mathcal{L} \propto H_D \begin{array}{c} \frac{N}{\sigma_x} & Nn_b f_r & \frac{1}{\sigma_y} \\ & \uparrow & \uparrow & \sigma_y \\ & \uparrow & \uparrow & & \uparrow \\ & & Beam \ \text{current} \\ \begin{array}{c} \text{Luminosity} \\ \text{spectrum} \end{array} \end{array} Beam \ \text{Quality} \\ (+\text{bunch length}) \end{array}$$

Beamstrahlung Optimisation

Note: Beam-beam and Background

Emittance and Luminosity

$$\mathcal{L} \propto H_D \;\; rac{N}{\sigma_x} \;\; rac{N n_b f_r}{\sigma_y} \left(rac{1}{\sigma_y}
ight) \;\; \sigma_y = \sqrt{eta_y \epsilon_y / \gamma}$$

Damping ring main source of horizontal emittance

Imperfections are main source of final vertical emittance Otherwise would have $L = 4.3 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Require 90% likelihood to meet static emittance growth target

	Norm Δε _x [nm]		Δε _y [nm]	
N N	Total contribution	Design limits	Static imperf.	Dynamic imperf.
Damping ring exit	700	5	0	0
End of RTML	150	1	2	2
End of main linac	50	0	5	5
Interaction point	50	0	5	5
sum	950	6	12	12

Low-emittance Generation

Emittance Preservation Example: Main Linac

Goal 90% less than 5 nm emittance growth

- Optimised design for stability
- Developed prototype alignment system
- Model system with codes
- Apply beam-based methods
- Tested methods at SLAC

Before correction

After 3 iterations

Example: Beamsize at ATF2

Seem to understand wakefield effects, would not be sever in colliders

Technologies

High efficiency klystrons, Instrumentation, kickers, ...

Accelerating structure

Short final quadrupole prototype

Magnet stabilisation

Drive beam and main beam modules

Short BDS sextupole prototype

Examples of Technology Use

SwissFEL

Normal-conducting FELs exist worldwide

RF frequency increases

SmartLight: EU cofunded study on cheap high-frequency FEL (led by Trieste)

FERMI

CLIC at CERN

Studies of:

- Civil engineering
- Electrical systems
- Cooling and ventilation
- Transport, logistics and installation
- Safety, access and radiation protection systems

Crucial for cost/power/schedule

Schedule

Ready for construction in 2026 Time for R&D until then could be sufficient Muon Colliders, Trieste 2019

CLIC Cost

Machine has been re-costed bottom-up in 2017-18

- Methods and costings validated at review on 7 November 2018 – similar to LHC, ILC, CLIC CDR
- Technical uncertainty and commercial uncertainty • estimated

Demain	Sub Damain	Cost [MCHF]		
Domain Sub-Domain		Drive-beam	Klystron	
	Injectors	175	175	
Main-Beam Production	Damping Rings	309	309	
	Beam Transport	409	409	
	Injectors	584	_	
Drive-Beam Production	Frequency Multiplication	379	_	
	Beam Transport	76	_	
Main Linea Madulas	Main Linac Modules	1329	895	
Main Linac Modules	Post decelerators	37	—	
Main Linac RF	Main Linac Xband RF	_	2788	
Baam Daliyany and	Beam Delivery Systems	52	52	
Beam Delivery and	Final focus, Exp. Area	22	22	
Post Collision Lines	Post-collision lines/dumps	47	47	
Civil Engineering	Civil Engineering	1300	1479	
	Electrical distribution	243	243	
Infrastructure and Services	Survey and Alignment	194	147	
infrastructure and Services	Cooling and ventilation	443	410	
	Transport / installation	38	36	
	Safety systems	72	114	
Machine Control, Protection	Machine Control Infrastructure	146	131	
and Safety systems	Machine Protection	14	8	
	Access Safety & Control System	23	23	
Total (rounded)		5890	7290	

Based on industrial study, reviewed by Jim Clarke, Mike Harrisson, Philippe Lebrun, Akira Yamamoto, Lyn Evans

 5890^{+1470}_{-1270} MCHF ; CLIC 380 GeV drive-beam based :

CLIC 380 GeV klystron based

 $: 7290^{+1800}_{-1540}$ MCHF

Construction of higher energy stages:

- From 380 GeV to 1.5 TeV, add 5.1 BCHF (drive-beam RF upgrade and lengthening of ML)
- From 1.5 TeV to 3 TeV, add 7.3 BCHF (second drive-beam complex and lengthening of ML) •
- Labour estimate: ~11500 FTE for the 380 GeV construction

CLIC Power

Further savings possible, main target damping ring RF Will look also more closely at 1.5 and 3 TeV numbers – these numbers are from the CDR in 2012 CERN is currently consuming ~1.2 TWh yearly (~90% in accelerators)

Note: Gamma-gamma Collider Concept

Note: Novel Acceleration Technologies

Mainly replace the main linac of linear colliders with novel technology acceleration

Plasma acceleration achieves very high gradients (> GV/m)

• Powered with beam or laser

But are only now starting to consider beam quality

• There are good reasons to worry about beam quality, so need to wait for R&D results

Dielectric accelerating structures promise more modest increase in gradient

Might become interesting in the longer run but not right now

• R&D should be supported if possible

Might become interesting in the longer run

- but not right now
- R&D is interesting D. Schulte

Muon Collider Motivation

Lepton colliders offer the potential of precision measurements

- Well defined initial conditions
- Low background levels
- ...

At high energies they are efficient discovery machines

- Full collision energy available for particle production
- But sufficient luminosity is required

Luminosity Goal

- To investigate s-channel processes, luminosities have to increase quadratically with energy
- From the physics a luminosity goal is defined as

$$L \gtrsim \frac{5 \,\mathrm{years}}{\mathrm{time}} \left(\frac{\sqrt{s_{\mu}}}{10 \,\mathrm{TeV}}\right)^2 2 \cdot 10^{35} \mathrm{cm}^{-2} \mathrm{s}^{-1}$$

- The main difficulty of electron-positron colliders is to provide the luminosity at high energies
- Circular collider radiate dramatically at high energy
- Linear colliders can provide linear increase of luminosity for constant beam current
- Or a constant luminosity per beam power

A muon collider might break this limit and provide a luminosity that increases linearly with energy for constant beam power

Linear Collider Scaling with Energy

Low energy

$$n_{\gamma} \propto E_{\gamma} \propto \frac{N}{\sigma_x + \sigma_y}$$

High energy

$$n_{\gamma} \propto \left(rac{\sigma_z}{\gamma}
ight)^{rac{1}{3}} \left(rac{N}{\sigma_x+\sigma_y}
ight)^{rac{2}{3}}$$

$$\mathcal{L} \propto H_D rac{n_{\gamma}^{rac{3}{2}}}{\sqrt{\sigma_z}} rac{1}{\sqrt{\epsilon_y \beta_y}} rac{R+1}{R} rac{\eta P_{wall}}{mc^2}$$

Luminosity per power is independent of energy

$$R = \sigma_x / \sigma_y$$

D. Schulte

Proton-driven Muon Collider Concept

Short, intense proton bunches to produce hadronic showers

Muons are captured, bunched and then cooled

Acceleration to collision energy

Collision

Pions decay into muons that can be captured

Collider Parameter Examples

From the MAP collaboration: Proton source

Muon Collider Parameters						
		<u>Higgs</u>	<u>Multi-TeV</u>			
					Accounts for	
		Production			Site Radiation	
Parameter	Units	Operation			Mitigation	
CoM Energy	TeV	0.126	1.5	3.0	6.0	
Avg. Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.008	1.25	4.4	12	
Beam Energy Spread	%	0.004	0.1	0.1	0.1	
Higgs Production/10 ⁷ sec		13,500	37,500	200,000	820,000	
Circumference	km	0.3	2.5	4.5	6	
No. of IPs		1	2	2	2	
Repetition Rate	Hz	15	15	12	6	
β*	cm	1.7	1 (0.5-2)	0.5 (0.3-3)	0.25	
No. muons/bunch	10 ¹²	4	2	2	2	
Norm. Trans. Emittance, ϵ_{TN}	π mm-rad	0.2	0.025	0.025	0.025	
Norm. Long. Emittance, ϵ_{LN}	π mm-rad	1.5	70	70	70	
Bunch Length, σ_s	cm	6.3	1	0.5	0.2	
Proton Driver Power	MW	4	4	4	1.6	
Wall Plug Power	MW	200	216	230	270	

Key to Luminosity

Win luminosity per power as the energy increases

In linear colliders, luminosity per power tends to be energy independentexcept if one changes technology (very short bunches, smaller vertical emittance)

In circular electron-positron colliders luminosity drops rapidly with energy (power ≈3.5)D. SchulteCLIC and Muon Colliders, Trieste 201933

Source

High power target (8 MW vs. 2-4 MW required) has been demonstrated

Maximum of 30x10¹² protons with 24 GeV

But radiation issues?

What could be made available at CERN (or elsewhere) as a proton driver for a potential test facility?

Transverse Cooling

Cooling: The Emittance Path

MICE

MICE Results

Other Tests

FNAL Breakthrough in HTS cables

NHFML 32 T solenoid with lowtemperature HTS A number of components has been developed

FNAL 12 T/s HTS 0.6 T max

Mark Palmer

Test Facility Example

Carlo Rubbia: The experimental realization of the presently described $\mu+\mu$ - Ring Collider may represent the most attractive addition of the future programs on the Standard Model to further elucidate the physics of the Ho, requiring however a substantial amount of prior R&D developments, which must be experimentally confirmed by the help of the Initial Muon Cooling Experiment(al) program.

Initial Cooling Experiment Use 100 ns ESS pre-pulse with 3x10¹¹ protons Yields 3x10⁷ μ⁻ and 6x10⁷ μ⁺ around 250 MeV

Beam Acceleration

An important cost driver

Important for power consumption

A trade-off between cost and muon survival Not detailed design, several approaches considered

- Linacs
- Recirculating linacs
- FFAGs

Challenge is large bunch charge but single bunch

Much larger than collider ring

Collider Ring

 β

 \propto

Strong focusing at IP to maximise luminosity Becomes harder with increasing energy

High field dipoles to minimise collider ring size and maximise luminosity Minimise distances with no bending

Decaying muons impact accelerator components, detector and public The latter becomes much worse with energy

Radiation to public in case LHC tunnel use

Might be best to use LHC tunnel to house muon accelerator and have dedicated new collider tunnel

Proposal to use LHC as last accelerator ring and collider ring (Neuffer/Shiltsev) might reduce cost but creates many specific challenges

The LEMMA Scheme

Produce muon beam with low emittance using a positron beam No cooling required

The LEMMA Scheme

Key concept (original numbers in brackets)

Produce muon beam with low emittance using a positron beam (40 nm vs. 25 μ m in proton scheme)

- No cooling required, use lower muon current
- Positron beam (45 GeV, 3x10¹¹ particles every 200 ns) passes through target and produces muon pairs
- Muon bunches are circulated through target O(2000) times accumulating more muons (4.5x10⁷)
- Every 0.5 ms, the muon bunches are extracted and accelerated
- They are combined in the collider ring, where they collide

Key Issues

Small efficiency of converting positrons to muon pairs

- Muon pair production is only small fraction of overall cross section (O(10⁻⁵))
- Most positrons lost with no muon produced
- Have to produce many positrons (difficult)
- O(100MW) synchrotron radiation
- High heat load and stress in target (also difficult)

Two additional severe issues were identified

- The multiple scattering of the muons in the target
 - Theoretical best emittance of 600 nm instead of assumed 40 nm
 - Reduction of luminosity by factor 15
- Small bunches were accelerated and later merged but no design exists for the merger
 - The combination factor is proportional to beam energy
 - If the combination does not work, loose a large factor of luminosity

$$\begin{array}{c} e^+e^- \rightarrow \mu^+\mu^- \\ e^+e^- \rightarrow e^+e^-\gamma \end{array}^{\rm O(1\mu b)}$$

O(100mb), E_γ≥0.01 E_p

Working on a better design but have to wait and see the outcome

Ongoing LEMMA Effort

Beam induced background studies on detector at $\sqrt{s} = 1.5$ TeV

arXiv:19 MARS15 simulation in a range of ±100 m

Particle composition of the beam-induced background as a function of the muon decay distance from the interaction point

Simulated time of arrival (TOF) of the beam background particles to the tracker modules withsrespect to the expected time (TO) of unphoton remitted from IP 47

Conclusion on Muon Collider

• Can muon colliders at this moment be considered for the next project?

- Enormous progress in the proton driven scheme and new ideas emerged
- But at this moment not mature enough for a proposal

• Is it worthwhile to do muon collider R&D?

- Yes, it promises the potential to go to very high energy
- It may be the best option for very high lepton collider energies, beyond 3 TeV
- It has strong synergies with other projects, e.g. magnet and RF development
- Has synergies with other physics experiments
- Should not miss this opportunity

• What needs to be done?

- Set-up an international collaboration to promote muon colliders
- Develop a muon collider concept based on the proton driver and considering the existing infrastructure.
- Consolidate the positron driver scheme
- Carry out the R&D program toward the muon collider.
 - Muon production and cooling is key => A new test facility is required.
 - A conceptual design of the collider has to be made
 - Many components need R&D, e.g. fast ramping magnets, background in the detector
 - Site-dependent studies to understand if existing infrastructure can be used
 - limitations of existing tunnels, e.g. radiation issues
 - optimum use of existing accelerators, e.g. as proton source

Proposed Tentative Timeline

MACHINE

Conclusion

CLIC is based on mature technology and can reach 3 TeV

An implementation in stages is foreseen

- 380 GeV
- 1.5 TeV

• 3 TeV

The cost of each stages is roughly equivalent to the LHC cost

The project is technically ready to produce a TDR and to start construction in several years

It is now up to the European Strategy for Particle Physics to decide how to continue with the project

The muon collider has promises to be able to go to multi-TeV energies

A baseline has to be developed

A test facility will be essential

Two approaches currently exist, the proton driver and the positron driver, which has to be consolidated

It is now up to the European Strategy for Particle Physics to define the priority of this R&D in preparation of the long-term future

Reserve

Comparison

Project	Туре	Energy [TeV]	Int. Lumi. [a ⁻¹]	Oper. Time [y]	Power [MW]	Cost
ILC	ee	0.25	2	11	129 (upgr. 150-200)	4.8-5.3 GILCU + upgrade
		0.5	4	10	163 (204)	7.98 GILCU
		1.0			300	?
CLIC	ee	0.38	1	8	168	5.9 GCHF
		1.5	2.5	7	(370)	+5.1 GCHF
		3	5	8	(590)	+7.3 GCHF
CEPC	ee	0.091+0.16	16+2.6		149	5 G\$
		0.24	5.6	7	266	
FCC-ee	ee	0.091+0.16	150+10	4+1	259	10.5 GCHF
		0.24	5	3	282	-
		0.365 (+0.35)	1.5 (+0.2)	4 (+1)	340	+1.1 GCHF
LHeC	ер	60 / 7000	1	12	(+100)	1.75 GCHF
FCC-hh	рр	100	30	25	580 (550)	17 GCHF (+7 GCHF)
HE-LHC	рр	27	20	20		7.2 GCHF

Key to Luminosity

Collider Parameter Examples

Muon Collider Parameters						
	<u>Higgs</u>	<u>Multi-TeV</u>				
					Accounts for	
		Production			Site Radiation	
Parameter	Units	Operation			Mitigation	
CoM Energy	TeV	0.126	1.5	3.0	6.0	
Avg. Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.008	1.25	4.4	12	
Beam Energy Spread	%	0.004	0.1	0.1	0.1	
Higgs Production/10 ⁷ sec		13,500	37,500	200,000	820,000	
Circumference	km	0.3	2.5	4.5	6	
No. of IPs		1	2	2	2	
Repetition Rate	Hz	15	15	12	6	
β*	cm	1.7	1 (0.5-2)	0.5 (0.3-3)	0.25	
No. muons/bunch	10 ¹²	4	2	2	2	
Norm. Trans. Emittance, ϵ_{TN}	π mm-rad	0.2	0.025	0.025	0.025	
Norm. Long. Emittance, ϵ_{LN}	π mm-rad	1.5	70	70	70	
Bunch Length, σ_s	cm	6.3	1	0.5	0.2	
Proton Driver Power	MW	4	4	4	1.6	
Wall Plug Power	MW	200	216	230	270	

Potential Approaches

Acceleration is important for cost and power consumption No conceptual baseline design yet But different options considered A whole chain is needed from source to full energy

Recirculating linacs

• Fast acceleration but typically only a few passages through RF, hence high RF cost

FFAGs

• Static magnets, but only limited increase in energy possible

Rapid cycling synchrotron (RCS)

- Potentially larger acceleration range at affordable cost
- Could use combination of static superconducting and ramping normal-conducting magnets
- But have to deal with energy in fast pulsing magnets

Challenge to achieve a combination of high efficiency, low cost and good beam quality

Collider Ring

Strong focusing at IP to maximise luminosity Becomes harder with increasing energy

High field dipoles to minimise collider ring size and maximise luminosity Minimise distances with no bending

Proposal to combine last accelerator ring and collider ring (Neuffer/Shiltsev) might reduce cost but creates many specific challenges

Decaying muons impact accelerator components, detector and public The latter becomes much worse with energy

Radiation to public in case LHC tunnel use

Might be best to use LHC tunnel to house muon accelerator and have dedicated new collider tunnel

Beam induced background studies neutrino radiation hazard

Conclusion

We think we can answer the following questions

- Can muon colliders at this moment be considered for the next project?
 - Enormous progress in the proton driven scheme and new ideas emerged
 - But at this moment not mature enough for a proposal

• Is it worthwhile to do muon collider R&D?

- Yes, it promises the potential to go to very high energy
- It may be the best option for very high lepton collider energies, beyond 3 TeV
- It has strong synergies with other projects, e.g. magnet and RF development
- Has synergies with other physics experiments
- Should not miss this opportunity

• What needs to be done?

- Muon production and cooling is key => A new test facility is required.
- A conceptual design of the collider has to be made
- Many components need R&D, e.g. fast ramping magnets, background in the detector
- Site-dependent studies to understand if existing infrastructure can be used
 - limitations of existing tunnels, e.g. radiation issues
 - optimum use of existing accelerators, e.g. as proton source

Recommendations

Set-up an international collaboration to promote muon colliders and organize the effort on the development of both accelerators and detectors and to define the road-map towards a CDR by the next Strategy update.

Develop a muon collider concept based on the proton driver and considering the existing infrastructure.

Consolidate the positron driver scheme addressing specifically the target system, bunch combination scheme, beam emittance preservation, acceleration and collider ring issues.

Carry out the R&D program toward the muon collider. Based on the progress of the protondriver and positron-based approaches, develop hardware and research facilities as well as perform beam tests. Preparing and launching a conclusive R&D program towards a multi-TeV muon collider is mandatory to explore this unique opportunity for high energy physics. A well focused international effort is required in order to exploit existing key competences and to draw the roadmap of this challenging project. The development of new technologies should happen in synergy with other accelerator projects. Moreover, it could also enable novel midterm experiments.

Muon Collider Working Group Findings

Muon-based technology represents a unique opportunity for the future of high energy physics research: the multi-TeV energy domain exploration.

The development of the challenging technologies for the frontier muon accelerators has shown enormous progress in addressing the feasibility of major technical issues with R&D performed by international collaborations.

In Europe, the reuse of existing facilities and infrastructure for a muon collider is of interest. In particular the implementation of a muon collider in the LHC tunnel appears promising, but detailed studies are required to establish feasibility, performance and cost of such a project.

A set of recommendations at the end will allow to make the muon collider technology mature enough to be favorably considered as a candidate for ehigh-energy facilities in the future.