In IEEE floating point standard a real number is
To help the calculation of \sqrt{R}
the representation of R must be changed into

$$
(-1)^{S} \times M \times 2^{E}
$$

In 32-bit representation :

$$
\begin{aligned}
R=(-1)^{S} \times M^{\prime} \times 2^{2 E^{\prime}} \quad \text { where } \quad S & =0 \\
E^{\prime} & =\operatorname{Int}(E / 2) \\
M^{\prime} & \in[0,4[
\end{aligned}
$$

$$
\begin{array}{l|rr}
M \in[1,2[& \text { Or } & M \in[0,2[\\
E \in\{-126, \cdots, 127\} & \text { if } & E=-127
\end{array}
$$

LiP
normal
sub-normal

Square Root - Direct Method

Square Root - Direct Method

Let R be a positive real number $(S=0) \quad R=(-1)^{S} \times M \times 2^{E}$
However, when $M^{\prime} \in\left[0,1\left[\right.\right.$ the calculation of $\sqrt{M^{\prime}}$ may lead to a lost of precision
We seek to calculate the positive real number \sqrt{R}

$$
\sqrt{R}=(-1)^{S} \times \sqrt{M} \times 2^{E / 2}
$$

$\frac{E}{2}$ is easy to calculate ... except when E is odd
Therefore if $M^{\prime}=0 \quad \sqrt{M^{\prime}}=0$
and if $\left.\quad M^{\prime} \in\right] 0,1\left[\quad E^{\prime}\right.$ is decreased and M^{\prime} is $\times 2$ until it can fit within $[1,4[$

Li
Square Root
February 2017

Square Root - Direct Method
Then, the problem can be stated as :

$$
\begin{aligned}
& \text { Given a positive real number } A \in[1,4[\\
& \text { we seek to calculate } X_{T h} \text { such as } X_{T h}=\sqrt{A}
\end{aligned}
$$

Let X_{n} be an approximation of $X_{T h}$ coded on $n+1$ bits

$$
X_{n}=\sum_{j=0}^{n} x_{-j} \times 2^{-j} \quad \text { such as } X_{n}^{2} \leq A<\left(X_{n}+2^{-n}\right)^{2}
$$

46 We propose to calculate X_{n} digit-by-digit Square Root February 2017

Square Root - Direct Method
Let $X_{k}=\sum_{j=0}^{k} x_{-j} \times 2^{-j} \quad$ such as $X_{k}{ }^{2} \leq A<\left(X_{k}+2^{-k}\right)^{2}$
At each iteration X_{k} is obtained from X_{k-1}

$$
X_{k}=X_{k-1}+x_{-k} 2^{-k} \quad x_{-k} \in\{0,1\}
$$

$$
2^{-k} \text { is denoted } W_{k}
$$

LiP
Square Root
February 2017

Square Root - Direct Method

$\Delta_{k}=A-X_{k}{ }^{2}$
$\Delta_{k}=A-\left(X_{k-1}+x_{-k} 2^{2 k}\right)^{2}$
$\Delta_{k}=A-\left(X_{k-1}{ }^{2}+2 x_{-k} 2^{-k} X_{k-1}+x_{-k} 2^{-k} 2^{-k}\right)$
$\Delta_{k}=\Delta_{k-1}-x_{-k} 2^{-k}\left(2 X_{k-1}+2^{-k}\right)$
$2^{k} \Delta_{k}=2^{k} \Delta_{k-1}-x_{-k}\left(2 X_{k-1}+2^{-k}\right) \quad$ Let $D_{k}=2^{k} \Delta_{k}$
$D_{k}=2 D_{k-1}-x_{-k}\left(2 X_{k-1}+2^{-k}\right) \quad x_{-k}=\left\{\begin{array}{l}0 \\ 1\end{array}\right.$ such as $0 \leq D_{k}$
${ }^{\circ} 6$
Square Root
February 2017

$$
\begin{aligned}
& \text { Square Root - Direct Method - Improvement } \\
& x_{-k+1}=0, x_{-k}=0\left\{\begin{array}{l}
D_{k}=4 D_{k-2} \\
X_{k}=X_{k-2}
\end{array}\right. \\
& x_{-k+1}=0, x_{-k}=1\left\{\begin{array}{l}
D_{k}=4\left(D_{k-2}-1 / 2\left(X_{k-2}+1 \times 2^{-k-1}\right)\right) \\
X_{k}=X_{k-2}+1 \times 2^{-k}
\end{array}\right. \\
& x_{-k+1}=1, x_{-k}=0\left\{\begin{array}{l}
D_{k}=4\left(D_{k-2}-\quad\left(X_{k-2}+2 \times 2^{-k-1}\right)\right) \\
X_{k}=X_{k-2}+2 \times 2^{-k}
\end{array}\right. \\
& x_{-k+1}=1, x_{-k}=1\left\{\begin{array}{l}
D_{k}=4\left(D_{k-2}-3 / 2\left(X_{k-2}+3 \times 2^{-k-1}\right)\right) \\
X_{k}=X_{k-2}+3 \times 2^{-k}
\end{array}\right. \\
& \text { Square Root } \quad \text { February 2017 }
\end{aligned}
$$

