Division - Direct Method

Division - Direct Method

In IEEE floating point standard a real number is
If U or V are sub-normal numbers, the calculation of $\frac{U}{V}$ represented as :

$$
(-1)^{S} \times M \times 2^{E}
$$ may lead to a lost of precision

In 32-bit representation :
Therefore if $M_{U}=0 \quad \frac{U}{V}=0$

$$
S \in\{0,1\}
$$

$$
\begin{array}{l|ll}
M \in[1,2[& \text { Or } \quad M \in[0,2[
\end{array}
$$

$$
E \in\{-126, \cdots, 127\} \quad \text { if } \quad E=-127
$$

นீ
normal
sub-normal

Square Root December 2017
and if M_{U} or $\left.M_{V} \in\right] 0,1[$
E_{U} or E_{V} are decreased and M_{U} or M_{V} are $\times 2$
Lip until they can fit within $\quad[1,2[$
\qquad
Square Root
December 2017

Division - Direct Method

Division - Direct Method

Since $M_{U} \in\left[1,2\left[\right.\right.$ and $M_{V} \in\left[1,2\left[\quad \frac{M_{U}}{M_{V}} \in\right] 0.5,2[\right.$
We seek to calculate the real number $\frac{U}{V}$

$$
\begin{aligned}
U & =(-1)^{S_{U}} \times M_{U} \times 2^{E_{U}} \\
V & =(-1)^{S_{V}} \times M_{V} \times 2^{E_{V}}
\end{aligned}
$$

Therefore if $\quad M_{U}<M_{V}$
E_{U} is decreased and M_{U} is $\times 2$ so $\frac{M_{U}}{M_{V}} \in[1,2[$
then $\frac{U}{V}=(-1)^{S_{U} \oplus S_{V}} \times \frac{M_{U}}{M_{V}} \times 2^{E_{U}-E_{V}}$
นீ

Division - Direct Method

Division - Direct Method

Then, the problem can be stated as :
Let $X_{k}=\sum_{j=0}^{n} x_{-j} \times 2^{-j} \quad$ such as $\quad X_{k} \leq \frac{A}{B}<\left(X_{k}+2^{-k}\right)$
Given two positive real numbers $A \in[1,4[$ and $B \in[1,2[$

At each iteration X_{k} is obtained from X_{k-1}
Let X_{n} be an approximation of $X_{T h}$ coded on $n+1$ bits

$$
X_{k}=X_{k-1}+x_{-k} 2^{-k} \quad x_{-k} \in\{0,1\}
$$

$X_{n}=\sum_{j=0}^{n} x_{-j} \times 2^{-j} \quad$ such as $\quad X_{n} \leq \frac{A}{B}<\left(X_{n}+2^{-n}\right)$

0
4

We propose to calculate X_{n} digit-by-digit
Square Root
December 2017

$$
\begin{array}{cc}
\hline \text { Division - Direct Method - Improvement } \\
\begin{array}{ll}
\Delta_{k}=A-B X_{k} & \text { radix } 4 \\
\Delta_{k}=A-B\left(X_{k-2}+\left(x_{-k+1} 2^{-k+1}+x_{-k} 2^{-k}\right)\right) & \\
\Delta_{k}=\Delta_{k-2}-B\left(x_{-k+1} 2^{-k+1}+x_{-k} 2^{-k}\right) & \\
2^{k} \Delta_{k}=2^{k} \Delta_{k-2}-B\left(2 x_{-k+1}+x_{-k}\right) & \text { Let } \quad D_{k}=2^{k} \Delta_{k} \\
D_{k}=4\left(D_{k-2}-\frac{B}{4}\left(2 x_{-k+1}+x_{-k}\right)\right) \\
\text { 6 } \\
\text { Square Root } & \text { December 2017 } \\
\hline
\end{array}
\end{array}
$$

Division - Direct Method - Improvement

$$
\begin{array}{r}
x_{-k+1}=0, x_{-k}=0\left\{\begin{array}{l}
D_{k}=4 D_{k-2} \quad \text { radix } 4 \\
X_{k}=X_{k-2}
\end{array}\right. \\
x_{-k+1}=0, x_{-k}=1\left\{\begin{array}{l}
D_{k}=4\left(D_{k-2}-\frac{B}{4}\right) \\
X_{k}=X_{k-2}+1 \times 2^{-k}
\end{array}\right. \\
x_{-k+1}=1, x_{-k}=0\left\{\begin{array}{l}
D_{k}=4\left(D_{k-2}-2 \frac{B}{4}\right) \\
X_{k}=X_{k-2}+2 \times 2^{-k}
\end{array}\right. \\
\text { Square Root } \begin{array}{l}
x_{k}=4\left(D_{k-2}-3 \frac{B}{4}\right) \\
x_{-k+1}=1, x_{-k}=1+3 \times 2^{-k}
\end{array} \\
\text { December 2017 }
\end{array}
$$

Division - Direct Method - Improvement
Division - Direct Method - Improvement
$x_{-k+1}=0, \quad\left\{\begin{array}{l}D_{k}=4 D_{k-2} \\ x_{k}=x_{k-2}\end{array}\right.$
$x_{-k+1}=0$,
$x_{-k}=0$$\left\{\begin{array}{l}D_{k}=4 D_{k-2} \\ X_{k}=X_{k-2}\end{array}\right.$
Iteration scheme :
$\left\{\begin{array}{l}D_{k}=4\left(D_{k-2}-\frac{B}{4}\left(2 x_{-k+1}+x_{-k}\right)\right) \\ X_{k}=X_{k-2}+\left(2 x_{-k+1}+x_{-k}\right) 2^{-k}\end{array}\right.$
$x_{-k+1}, x_{-k}=\left\{\begin{array}{l}00 \\ 01 \\ 10 \\ 11\end{array} \quad\right.$ such as $0 \leq D_{k}$
Li

Division - Direct Method - Improvement

