Strategies that Engage Undergraduate Students to Learn about Space Weather

M. CHANTALE DAMAS, PHD
QUEENSBOROUGH COMMUNITY COLLEGE (QCC)
OF THE CITY UNIVERSITY OF NEW YORK (CUNY)

THE INTERNATIONAL SPACE WEATHER INITIATIVE WORKSHOP 2019:
MAY 20 - 24, 2019
Trieste, Italy
Outline

1. The case for undergraduate research - Why is it important?
2. Why Space Weather (Swx)?
3. Four strategies that engage students successfully in research
 - Case study: Queensborough Community College (QCC) of the City University of New York (CUNY)
4. Challenges
5. Outcomes
6. Summary -- Broader Impact
Case for Undergraduate Research

Undergraduate research experiences in science, technology, engineering and mathematics (STEM) fields provide a variety of benefits to students including:

✓ Sophisticated understandings of science and its nature
✓ Improved attitudes toward STEM
✓ Career awareness in STEM fields
✓ Enhanced critical thinking, and
✓ Improved self-efficacy, persistence and confidence
Case for Undergraduate Research (cont.)

- Motivated students that are ready for graduate programs
- Preparing the next generation of researchers
- Passing the research baton to the next generation
Why Space Weather (Swx)?

-Space Weather? Never heard of it.
-Relevant to students because of technology
-Considered a natural hazard (www.Ready.gov)
-Learn about NASA—60 years on, NASA still got it! (still a big draw!)
-Learn about National Oceanic & Atmospheric Administration (NOAA)
-Tons of freely available data online (both archival & real-time)—computational thinking & data analytic skills
-Lots of models that help with visualization
-Great way to teach physics without scaring students too much!
-Sounds interesting
-Pretty cool stuff!
Four strategies that engage students successfully in research

1. Adopt & Adapt (A&A)
2. Find partners (universities, research labs, private industries, etc.)
3. Develop a Community of scholars (COS)—Learning Community
4. Program Assessment
Four strategies that engage students successfully in research

1. **Adopt & Adapt (A&A)**

 - No need to reinvent the wheel!
 - Plenty of materials freely available online (public domain)
Four strategies that engage students successfully in research

2. Find partners (other universities, research labs, private industry, etc.)

- Don’t have do it alone!
- Seek partners that can:
 - Share resources (research facilities, library, etc.)
 - Host students during the summer
 - Mentor students
 - Support/Write proposals
Four strategies that engage students successfully in research

3. Develop a Community of scholars (COS)—Learning Community

- Faculty & Peer mentoring
- Continuity—More advanced students train new students
- Academic & Social support—Students offer support to each other both academically & socially
- Integrate student into the academy—Students feel part of a greater community and have a sense of belonging.
Four strategies that engage students successfully in research

4. Program Assessment

What is working and what is not working

Methods: Surveys & focus groups (many available online—adopt & adapt)

1) What gains do students make from their year-long research?

2) Are students satisfied with their year-long research experience, and with the training and support provided by project?
Know what’s available on campus

✓ QCC is a 2-Yr College – mission is primarily teaching, not research (QCC requiring research more and more)
✓ Very heavy teaching load
✓ Library resources (scientific journals, books, etc.) very limited
✓ Very little time to attend meetings/conferences
✓ Only person in department doing research (lone wolf)
Know Students

- 2-Yr community college students (US)
- 1st year at university
- Little to no background in physics (~ 1-2 semesters of introductory physics)
- Diverse academic background, i.e., math skills
- Diverse population (minorities & women)
- Many work full-time/part-time + heavy course load + family obligations + commute = no time for research
- First generation college students
QCC Space Weather Research & Education Program Model

Program: Queensborough Community College (QCC) Space Weather Research & Education Program (SWREP)

Main Goal: Engage undergraduate students as early as their first year in research and education activities in solar, geospace and atmospheric physics under the umbrella discipline of space weather
QCC SWREP Model

Year-Long Research Experience

- **Academic Year (Sustainable)**
 - Over two semesters
 - Students learn fundamentals of space weather and gain basic research skills.

- **Summer Internship (Not so sustainable)**
 - 10-week paid program
 - Students are placed in paid research internships at partner institutions.
Table 2. Space Weather Research and Education Curriculum

<table>
<thead>
<tr>
<th>Item</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course: Research Projects in Space Weather (Swx)</td>
<td>Semester 1: Fundamentals of Swx and Impact technological systems.</td>
</tr>
<tr>
<td></td>
<td>Semester 2: Research project through case studies of storm events.</td>
</tr>
<tr>
<td>Summer research internship program</td>
<td>-10-week research internship at GSFC or CUNY to expand academic year experience</td>
</tr>
<tr>
<td></td>
<td>-Includes a one week Space weather bootcamp at NASA/CCMC</td>
</tr>
<tr>
<td>Synergistic Activities</td>
<td>Workshops & training, i.e., data analysis techniques, virtual community, research integrity, etc.</td>
</tr>
</tbody>
</table>

From Damas et.al., 2019 in preparation
QCC SWREP Model Year-long Format (cont.)

- Students receive course credit
- Students meet ~ 4-hours/week as a class
- Students work independently and in groups
- Students meet individually with faculty mentors
SWREP Model Activities

- Materials Development (Strategy 1)
- Research Projects (Strategy 2)
- Student Support (Strategy 3)
- Program Assessment (Strategy 4)
SWREP Activities

Materials Development (strategy 1)

Basic ➔ Novice ➔ Advanced
SWREP Activities: Materials—Basic

Fundamentals of Swx

A. Materials available freely on line that introduce students to space weather:
2. NASA@science videos—short videos on YouTube on the Sun, CMEs, solar flares, etc.
3. Community Coordinated Modeling Center (CCMC) materials & support

B. Websites:
1. Spaceweatherlive.com
2. Spaceweather.com
3. NASA, NOAA, etc.

C. Books:
1. Marc Moldwin’s Introduction to Space Weather (basic & novice)
2. Delores Knipp’s Understanding Space weather and the Physics behind it (for more advanced students because of E&M)
SWREP Activities: Research Projects
(strategy 2)

Work with partners to develop student projects that:

- Are well-defined and have an end (not too open ended). There are some results even if more questions are raised.
- Take into account student level when developing projects
- Take into account home university’s resources (library, computer lab space, software, etc.)
- With little or no background in physics (electricity & magnetism (E&M), plasma, etc.) use large data sets freely available on the internet from both space and ground-based instruments
- Require team work
- Are Interdisciplinary
- Take into account **System Science**, which views the Sun–heliosphere–magnetosphere–ionosphere–atmosphere complex as an integrated system.
Students, Meet Data!

Students:

✓ Get to know (intimately) large data sets
✓ Analyze both historical (archival) & real-time data
✓ Learn that data can be very messy!! with lots of gaps, etc.
✓ Perform data/statistical analysis using mainly MS EXCEL or MATLAB, etc.
✓ Gain both data analysis and computational thinking skills
✓ Write and present their results to scientists and peers

Where to get data
1. NOAA Space weather Prediction Center (SWPC)
2. SPDF - Coordinated Data Analysis Web (CDAWeb) (https://cdaweb.sci.gsfc.nasa.gov/index.html/)
3. Individual spacecrafts (SDO, STEREO, SOHO, etc.)
SWREP Activities: Student Support

(Strategy 3)

“A good mentor is hard to find.”

Need to establish a strong mentoring program consisting of a diverse team. Mentoring can be done face-to-face or online. Students are mentored by:

- Faculty
- Research scientists from science labs, industry, etc.
- Graduate students
- Peer tutoring—very powerful—establish a community of scholars where students feel part of a community where they help and mentor each other.
Challenges

- Preparedness of students (math skills)
- Have students for only one or two years
- Resources: access to journals, software, etc.
- Time: heavy teaching load (4-5 courses/semester) plus research and committee work
- Funds to travel and pay students (always writing proposals!!)
- Look for and foster research collaboration
- Own research suffers
Challenges

• Research projects that are manageable & at proper level, yet challenging for students
• Competition for students' time (courses, work, clubs, etc.)
• **Sustainability** *(Can we continue without funds? YES and NO)*
 • Yes—Academic Year
 • No- Summer
1. Well-trained students with research/interdisciplinary skills
2. Communication skills (oral, written)
 1. Abstract, scientific paper, ppt presentation (oral), poster
3. Computer skills (programming-Python, C++, Matlab, etc.)
4. Publish in peer-reviewed proceedings/journals
5. Attend and present at a scientific meeting
6. Desire to continue in STEM, including transferring to 4-Yr university STEM (BS) and doctoral programs
Sample Projects & Abstract Titles Submitted to AGU

- Analysis of Positive Ionospheric Storm Disturbances
- Characterizing Interplanetary Structures of Long-Lasting Ionospheric Storm Events
- Dst Profile Investigation with Gamma Distribution and Diffusion-Like Distribution
- Modeling the Impacts of Geomagnetic Disturbances on the New York State Power Transmission System
- Is the Solar Magnetic Field Getting Weaker?
- Quantifying Temporal and Spatial Characteristics of Pulsating Aurora.
- Study of Geomagnetic Field Response to Solar Wind Forcing.
- Validation of the Kp Geomagnetic Index Forecast at CCMC
- The Magnetic Evolution of Coronal Hole Bright Points
- Inverse Flux versus Pressure of Muons from Cosmic Rays.
- Using Flow Charts to Visualize the Decision Process in Space Weather Forecasting
- Comparing the Characteristics of Ionosphere for Different Solar Minimum Periods
Students have access to a diverse group of mentors

- CUNY/QCC- Physics Department— M. Chantale Damas, Paul Marchese, Tak Cheung
- Community Coordinated Modeling Center (CCMC) based at NASA Goddard Space Flight Center— Maria “Masha” Kuznetsova, Yihua Zheng, Chigomezyo Ngwira, Leila M. Mays, Karin Muglach, Yareiska Collado-Vega, Anna Chulaki
- CUNY/City College of New York— Electrical Engineering Department (Ahmed Mohamed, Roger Dorsinville)
- NASA Goddard Heliophysics—Robert Michell, Marilia Samara, Neelharika Thakur (also of Prince George’s Community College) & Nat Gopalswamy
- CUNY/York- Physics Department: Kevin Lynch & James Popp
- University of Colorado at Boulder: Delores Knipp
Funding

Main funding Sources

2. NASA MUREP MC3I Program (2016-2019)

Other sources of Funding:
- CUNY/QCC NSF Research Experience for Undergraduates (REU) Program
- CUNY/Medgar Evers College NSF REU Program
- NASA New York Space Grant for Community College Partnership program
- The City of New York Mayor’s Office--CUNY Research Scholars Program for Community College Students (CRSP)
- Department of Education MSEIP

*Early Concept Grants for Exploratory Research
Summary

1) Undergraduate students contribute to the fundamental understanding of space weather, a natural hazard, and it’s impact on Earth’s space environment, life and society;

2) Long-term integration of space weather into the undergraduate curricula, thus exposing students to research early in their academic careers;

3) Increasing students’ interest in and motivation to study science, technology, engineering and mathematics (STEM), as well as preparing them for choosing a career path in space science or STEM related fields; and

4) Increase student persistence, transfer & graduation rates.
My students and I:

- Gratefully acknowledge support from:
 - the National Science Foundation Geosciences Directorate under NSF Award Number DES-1446704.
 - NASA MUREP Community College Curriculum Improvement (MC3I) under NASA Award Number NNX15AV96A.
 - The CUNY Research Scholars Program; QCC Physics Department & Office of Academic Affairs for travel support.
- Thank the NASA Goddard based CCMC Team & CUNY faculty for all of their support.
- Thank all data depositories: the NASA Goddard Space Flight Center Data Facility (CDAWeb), NOAA SWPC, MADRIGAL, Intermagnet, etc.
- Spaceweather.com & Spaceweatherlive.com
References

Grazie!!

Contact: M. Chantale Damas
Email: mdamas@qcc.cuny.edu