Siliana Mammino's short story

SURNAME Mammino

FIRST NAME

Liliana

WHERE I AM FROM Italy

CURRENT POSITION Professor emeritus

Department of Chemistry

University of Venda

(UNIVEN)

South Africa

AREA OF SPECIALISATION

theoretical/computational chemistry other interest: chemistry education

EDUCATION

Ph.D. in chemistry

Moscow State University (Russia), 1982

Degree in chemistry

University of Pisa (Italy), 1973 A 5-year degree

Classical Lyceum Diploma

Liceo-Ginnasio A. Canova, Treviso (Italy) (humanities-oriented secondary education)

WORK HISTORY SUMMARY

- National University of Somalia, 1974–1975
- University of Zambia, 1988–1992
- National University of Lesotho, 1993–1996
- At UNIVEN since 1997.

Another activity

• Research for the preparation of a chemistry textbook and textbook writing, 1983–1993.

BUILDING COMPUTATIONAL CHEMISTRY RESEARCH AT UNIVEN

- Built de novo, starting in 2004.
 - still ongoing process.

Overview of research themes (computational study of...)

- acylphloroglucinols
- antimalarial alkaloids of plant origin
- magnetically-induced currents through chemical bonds
- muchimangins
- sulphonylureas

Computational approaches

• methods: in vacuo: HF, MP2 (or MP2/HF),

DFT/B3LYP

bases 6-31G(d,p) 6-31+G(d,p)

in solution: PCM (polarizable continuum

model)

• calculation software: GAUSSIAN 03

• visualization: GaussView, Chem3D

• equipment: desk-top PCs

ACYLPHLOROGLUCINOLS (ACPLs)

- A large class of compounds structurally derived from 1,3,5-trihydroxybenzene (phloroglucinol) and characterised by the presence of a COR group
- Many of them are of natural origin and exhibit a variety of biological activities: bactericide, antibiotic, fungicide, antioxidant, antimalarial, etc.
- Viewed as potential lead compounds for drug development

What has been done

- Conformational studies
 - monomeric ACPLs as a class of compounds [1–5]
 - dimeric ACPLs as a class of compounds [6]
- Study of solvent effects
 - PCM studies in chloroform, acetonitrile and water [7]
 - study of adducts with explicit water molecules [8]
- Study of individual ACPL molecules
 - ACPLs with specific biological activities: antituberculosis [1, 9, 10], anticancer [11, 12], antioxidant [13–18]
 - other ACPL molecules [19, 20]
- Study of supramolecular structures [21]
- Complementary studies: the parent compound [22], its acid [23] and hydroxybenzenes in general [24, 25].

Patterns for the intramolecular hydrogen bond and the orientation of the OH groups in ACPLs

lowest energy conformers of selected structures

structures with additional O-H--O IHBs

donor or acceptor in R

donor or acceptor in R'

Other IHB types

Interaction of an OH with a π system

C-H···O interactions

Adducts with explicit water molecules

- adducts with one water molecule attached in turn to different donor or acceptor sites via an intermolecular H-bond, whose energy is calculated:
 - 6–8 kcal/mol when H₂O is the acceptor
 - 3–5 kcal/mol when H₂O is the donor
 - adducts with enough water molecules to approximate the first solvation layer
 - interaction energy between the central molecule and the water molecules:
 - 30–33 kcal/mol when $\mathbf{R'} = \mathbf{CH_3}$
 - 38–40 kcal/mol when $\mathbf{R'} = \mathbf{H}$

Adducts with explicit water molecules

Study of antioxidant ACPLs

- Calculated complexes with a Cu²⁺ ion to test their reducing ability
 - Considering all the possible binding sites for the ion
 - The charge of the ion is always reduced

Complexes of antioxidant ACPLs with a Cu²⁺ ion

Dimeric acylphloroglucinols

abbreviatin AB

bis(2,4-diacetylphloroglucyl)
methane
antibiotic, antimalarial

Bowl-shaped structures (potential)

• interesting feature: particularly deep bowls

ANTIMALARIAL ALKALOIDS OF PLANT ORIGIN

postgraduate student Kabuyi Mireille Bilonda (DRC)

pyrazole alkaloids [26]

A: withasomnine, B: p-hydroxy derivative of withasomnine, D: p-methoxy derivative of withasomnine, E: newbouldine, F: p-hydroxy derivative of newbouldine, G: p-methoxy derivative of newbouldine

Naphthylisoquinoline alkaloids

monomeric structures [27]

dimeric structures [28–30]

Josemine A₂ anti-HIV

Michellamine A antimalarial

intramolecular hydrogen bond in quinine

• first realization of the possibility of an IHB in the quinine molecule [31]

MUCHIMANGINS

• muchimangin B is active against pancreatic cancer, the others are not

- calculated both actual and model structures [32, 33]
- dominant importance of IHB patterns
- importance of moieties' orientations

MAGNETICALLY INDUCED CURRENTS THROUGH CHEMICAL BONDS

collaboration with Prof Luis Alvarez Thon

Aromaticity and IHBs in hydroxybenzenes

Isosurface of the magnitude of the current density (isovalue = 0.005) [34]

Current through the bond in diatomic molecules [35]

MY GROUP

Size of the group

- two M.Sc. students
- one Ph.D. student
- myself

Possibilities of further expansion

- attracting more postgraduate students
 - challenge: many students consider this research area as too difficult

An interesting feature

- the way research was developed can be viewed as a possible model for capacity building in computational chemistry research in institutions in which it is not yet present [36, 37]
 - the area is still scarce-skills in many contexts
 - importance to share existing expertise:
 - for research capacity building, including under challenging conditions
 - for education and training
 - training trainers

WHAT I WOULD LIKE SEEING HAPPENING

General features

- developing this research where it is not yet present
- fostering other specialists' familiarisation with its core activities and consequent collaboration possibilities
 - exploration of new options, including sustainability
- increasing general familiarisation with the theoretical background of chemistry
- networking
- "sharing" of available specialists where useful and feasible
- conduction of parallel projects in different institution/countries, above all in the initialisation stage

A suggestion

- developing the computational study of antimalarial molecules of natural origin in several countries simultaneously and co-ordinately
- envisaged advantages:
 - generation of information useful to drug development
 - retaining relevant stages of it in the continent
 - connection with an issue (malaria) that is an actual and urgent problem in many African countries
 - contributing to highlight the relevant roles of computational chemistry research for other types of research and for the search aimed at addressing health problems
 - connection with indigenous knowledge system

THANK YOU

MERCI

OBRIGADA

references

- 1. Mammino L., Kabanda M.M. J. Molec. Struct. (Theochem) 805, 39–52, 2007.
- 2. Mammino L., Kabanda M. M. J. Molec. Struct. (Theochem), 901, 210–219, 2009.
- 3. Mammino L., Kabanda M. M. Int. J. Quantum Chem. 112, 2650–2658, 2012.
- 4. Kabanda M. M., Mammino L. Int. J. Quantum Chem. 112, 3691–3702, 2012
- 5. Mammino L., Kabanda M. M. Molecular Simulation, 39 (1), 1–13, 2013.
- 6. Mammino L. J. Molec. Struct., 1176, 488–500, 2019.
- 7. Mammino L., Kabanda M. M. J. Phys. Chem. A, 113 (52), 15064–15077, 2009.
- 8. Mammino L., Kabanda M. M. Int. J. Quantum Chem. 110 (13), 2378–2390, 2010.
- 9. Mammino L., Kabanda M. M. Int. J. Quantum Chem., 108, 1772–1791, 2008.
- 10. Mammino L., Kabanda M. M. Int. J. Biol. Biomed. Engin., 1 (6), 114–133, 2012
- 11. Mammino L. Current Bioactive Compounds, 10 (3), 163–180, 2014.
- 12. Mammino L. Current Phys. Chem. 5, 274–293, 2015.
- 13. Mammino L. J. Molec. Model., 19, 2127–2142, 2013.
- 14. Delgado Alfaro R. A., Gomez-Sandoval Z., Mammino L. Int. J. Quantum Chem., 20, 2337, 2014.
- 15. Mammino L. *Molecules*, 2017, 22, 1294; doi:10.3390/molecules22081294
- 16. Mammino L. Int. J. Quantum Chem., 2017. DOI 10.1007/s00894-017-3443-4
- 17. Mammino L. In: Yan A. Wang et al. (Eds.), Concepts, Methods and Applications of Quantum Systems in Chemistry and Physics. Springer, 2018. pp. 281–304.
- 18. Mammino L. Advances in Quantum Chemistry. 2019. In press.
- 19. Mammino L. Kabanda M. M. WSEAS Transactions on Biology and Biomedicine, 6 (4), 79–88, 2009.
- 20. Mammino L. Int. J. Biol. Biomed. Engin., 2 (7), 15–25, 2013.
- 21. Mammino L. Molec. Phys., 115, 17-18, 2254–2266, 2017.
- 22. Mammino L., Kabanda M. M. J. Molec. Struct. (Theochem) 852, 36–45, 2008.
- 23. Mammino L., Kabanda M. M. Int. J. Quantum Chem. 110 (3), 595-623, 2010.
- 24. Mammino L., Kabanda M. M. Int. J. Quantum Chem., 111, 3701–3716, 2011.
- 25. Kabanda M. M., Mammino L. Int. J. Quantum Chem. 112, 519–531, 2012.
- 26. Mammino L., Bilonda K. M. J. Molec. Model. 20, 2464, 2014. DOI 10.1007/s00894-014-2464-5.
- 27. Mammino L., Bilonda M. K. *Theor. Chem. Acc.* 2016. DOI 10.1007/s00214-016-1843-7,.
- 28. Mammino L., Bilonda M. K. In Tadjer A., Pavlov R., Maruani J., Brändas E. J., Delgado-Barrio G. (Eds.), *Quantum Systems in Physics, Chemistry, and Biology Advances in Concepts and Applications*. Springer 2017, pp. 303–316.
- 29. Bilonda M. K., Mammino L. In Yan A. Wang et al. (Eds.), Concepts, Methods and Applications of Quantum Systems in Chemistry

- and Physics. Springer, 2018. pp. 305-329.
- 30. Bilonda M. K., Mammino L. Theor. Chem. Acc. In press.
- 31. Bilonda M. K., Mammino L. Molecules, 22, 245; 2017. DOI:10.3390
- 32. Mammino L., Bilonda M., Tshiwawa T. In: Nascimento M.A., Maruani J., Brändas E.J., Delgado-Barrio G. (Eds.), *Frontiers in Quantum Methods and Applications in Chemistry and Physics*. Springer, 2015, pp. 91–114.
- 33. Mammino L. Theor. Chem. Acc. 2016. DOI: 10.1007/S00214-016-1874-0,.
- 34. Alvarez-Thon L., Mammino L. Int. J. Quantum Chem., 2017. DOI: 10.1002/qua.25382.
- 35. Alvarez-Thon L., Mammino L. J. Comput. Chem., 39(1), 52–60, 2018.
- 36. Mammino L. In Gurib-Fakin A., Eloff J. N. (Eds), Chemistry for Sustainable Development in Africa, Springer 2012, pp. 81–104.
- 37. Mammino L. *Tanzania Journal of Science* 38 (3), 95–107, 2012.
- 38. Mammino L. Current Opinion in Green and Sustainable Chemistry, 13, 76-80, 2018.