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Studying the Hydrologic Cycle at Various Scales
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Climate, Hydrology and Water Resources

* How will Climate change affect precipitation
variability and water Availability?

 Can we predict the future changes
which are responsive
to uusern needs,)

Center for Hydrometeorology and Remote Sensing, University of California, Irvine
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Global Warming And Hydrologic Cycle Connection

- B g® Heating T

|
v v
4 4 4 J J J .
\\ A o & TemperaturT Evaporat|o1
mt P o o ‘l o o _ l 1

Water Atmospherf
Holding Moisture
Capacity

1 |

Green Rain 1
House Intensity
Effect

1 1

|~ N

Created by: Gi-Hyeon Park

Center for Hydrometeorology and Remote Sensing, University of California, Irvine
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Increasing Population: Number of Mega Cities

PrOJected Global Populatlon 8. 3 B|II|on by 2025

Population in Millions
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Urban population 1970: ~37%
2010: ~53%

Took 200,000 years of human history for world's population to reach 1 billion;

% and only 200 years more to reach 7 billion plus.
b Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Primary Soluion To Saisty
Water Resources Needs and




A Century of Water Resources Development:




Capturing and regulating Stream flow: Reservoirs




Roman Agqueducts Raised Water Works to Functional Art

Gravity flows of imported surface
water sustained ancient Roman cities.
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Today’s Large Agueducts are transforming many regions
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A Oanat Is a horizontal well!

Qanat is not the shortest distance from the surface to the groundwater
Source: Prof Majid Hassanizadeh

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Repailr of a Qanat Iin Yazd, Iran

Source: Prof Majid Hassanizadeh

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Ground Water

The way it IS now

Extraction
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Mechanical Pumps: Ground Water Over Pumping

4 Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Information Relevant to Water Resources Planning

Q) ectlons

Center for Hydrometeorology and Remote Sensing, University of California, Irvine
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Reservoir Inflow Forecasts
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Common practice in Flood and River Flow Forecasting

River Discharge

Forecast > )
Current Time Time

: Animation Assisted by: Q. Xia & Gi-H. Park
Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Extending the Short-term flood Forecasts

Estimating Future “Short-Term™ Rainfall:

1- Models: (NWP - QPF)

2- Extrapolation-based Nowcasting



Efforts in Extending the Forecast Lead Time

River Discharge

Observatlons (QPE) 7 opF
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Forecast < )
Current Time Time

Animation Assisted by: Q. Xia, Gi-H. Park & L. Bastidas

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Progress in QPF to extend the

lead ti ICc forecasts
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Quantitative Precipitation Forecast (QPF)
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Progress in hydrologic
modeling
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Fundamental Law

_ Change In Storage AS

| - O =AS

4 Center for Hydrometeorology and Remote Sensing, University of California, Irvine
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The Watershed

Area km2 12.78
Perimeter km 19.344
Min Elevation m 478.00
Max Elevation m 1756.00
Mean Elevation 930.34
Max Flow Length 8.878
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Trace The Water Drop
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Evolution of Hydrologic R-R Models

®/ 0 4 APl Model
I ar |

Lumped
Conceptual

Distributed
(Mike SHE)
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¥ Center for Hydrometeorology and Remote Physically-based



Hydrologlc I\/Iodellng 3 Elements!

— 1f the “World” of
& Watershed Hydrology
Was Perfect!

Area ¢
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Flow Iin Channels: How far can we go simplifying?

QOverbank areas

n — Manning Coefficient
R — Hydraulic Radius
S — Energy Slope




Hydrologic Modeling




Hydrologic Modeling: “Lumped”

Precipitation
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Center for Hydrometeorology and Remote Sensing, University of California, Irvine



“Semi-distributed” Hydrologic Models

- Observed
Lumped Model
[\/\‘ Semi-Distributed Model
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Day Animation Assisted by: Q. Xia
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Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Example of Distributed Model Appl. in large Basins

Sub-basin 3

Large basin

) Sub-basin 4
Sub-basin 1

R S
| Sub-basin 2 —




Example of Distributed Model
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Hydrologic Modeling

Will be Covéred By Professor Ph. Nguyen
y DATA guy




Model Calibration




A look Into the “heart” of R-R Models

Percolation Process is the
Core element in Partitioning
the rain between the various
stores
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4 Center for Hydrometeorology and Remote Sensing, University of California, Irvine




The ldentification Problem

1. Select a model structure (Input-State-Output equations)

2. Estimate values for the parameters

U — Universal Set

B - Basin .

M;(0) — Selected
Model Structure

U

“The Truth”

ooooooooooooooooooooooo
!

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




The Concept of Model Calibration

Measured Measured
Inputs Outputs

B Real World EE

MODEL (9) Computed

Outputs

v

Optimization
Procedure

"Calibration: constraining the model to be consistent with observations”

4 Center for Hydrometeorology and Remote Sensing, University of California, Irvine
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Calibration components

Objective Function
Search Algorithm

Sensitivity Analysis

Problems with identifiability

4 Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Calibration Criterion

[General Exponential Power Density]
(Posterior Parameter Probability Distribution Function)

N B \ e(Hi ) 2/(1+y) ]
p(6, |y.7)= [M} exp| —c(y)D | —
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Uniform y — (-1)
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0

4 Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Objective function Parameter Space

02= Q >

Parameter Space Objective Function Space

4 Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Parameter Sensitivity

Parmeter Space

4 Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Parameter Sensitivity
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4 Center for Hydrometeorology and Remote Sensing, University of California, Irvine



The Ideal case: Convex Optimization
e

Objective Function

Parameter X Created By G-H Park




Difficulties in Global Optimization

Objective Function

e

' r'be Para

Parameter X Created By G-H Park




Parameter Estimation (non-convex, multi-optima)
e

Objective Function

Parameter X Created By G-H Park




Parameter Estimation (non-convex, multi-optima)
e

Global Optig

Objective Function

Parameter X Created By G-H Park




Difficulties in Optimization

1.- Regions of More than one main
: nvergence reqgion
Attraction COnVergenceregio

Duan, Gupta, and Sorooshian, 1992, WRR

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Difficulties in Optimization
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3.- Roughness Rough surface with
discontinuous

derivatives

Duan, Gupta, and Sorooshian, 1992, WRR

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Difficulties in Optimization

1.- Regions of More than one main
convergence region

Attraction
2 - Local Many small "pits" in
Optima each region

3.- Roughness Rough surface with
discontinuous

derivatives

4.- Flathess Flat near optimum with
significantly different
parameter sensitivities

Duan, Gupta, and Sorooshian, 1992, WRR

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Optimization Strategy — Local Direct Search

Calibration of the Sacramento Model
Downhill Simplex Method, Nelder & Mead, 1965
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Duan, Gupta, and Sorooshian, 1992, WRR
Center for Hydrometeorology and Remote Sensing, University of California, Irvine




The SCE-UA Algorithm ...
(1992)

Duan, Gupta, and Sorooshian, 1992. WRR

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




The Shuffled Complex Evolution Algorithm

The SCE-UA Algorithm ...

Duan, Sorooshian, and Gupta 1992, WRR

4 Center for Hydrometeorology and Remote Sensing, University of California, Irvine




The Concept Behind SCE Method

4 Center for Hydrometeorology and Remote Sensing, University of California, Irvine



The Concept Behind SCE Method




The Concept Behind SCE Method




The Concept Behind SCE Method




SCE Method — How 1t works ...




Shuffled Complex Evolution (SCE-UA)




Global Optimization — The SCE-UA Algorithm

Duan, Gupta & Sorooshian, 1992, WRR
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Center for Hydrometeorology and Remote Sensing, University of California, Irvine



AGU Monograph — Now Available

ater Science and Application &

Calibration of Wa fershed Models presents

a state-of-the-art analysis of mathematical
methods used in the idemtification of models
far hydrologic forecasting, design, and water
resources management. From reviewing
advances in calibration methodologies,

to describing automated and interactive
strategies for parameter estimation, uncertainty
analysis, and probabilistic prediction, this
book addresses five questions essential to
the discipline:

What canstitutes best estimates for
watershed model parameters?

What computational procedures ensure
proper model calibration and meaningful
evaluation of performance?

How are calibration methods developed
and applied to watershed medels?

What calibration data are needed for
reliable parameter values?

Hew can watershed modelers best
estimate model parameters and assess
related uncertaimt es?

Far scientists, researchers and students of
watershed hydrology, practicing hydrologists,
civil and erwironmertal engineers, and water
TESOLNCE Managers.

Qingyun Duan
Hoshin V. Gupta

Soroosh Sorooshian

www.agu.org :
Alain N. Rousseau

Richard Turcotte
Editors
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