Obtain original web presentation here:

https://slides.com/odineidolon/chym2017-8/fullscreen#/

This PDF version is of lower quality

HOW TO DEAL WITH **OBSERVATIONAL DATA** FOR (HYDROLOGICAL) **MODELLING PURPOSES**

ADRIANO FANTINI

ICTP, Trieste, Italy

afantini@ictp.it

The Abdus Salam International Centre for Theoretical Physics

Online presentation: https://bit.ly/2MaOj¹P²

Which observations do you need for hydrology?

- Precipitation (possibly hourly, esp. for small basins)
- Temperature
- Snow
- Elevation data
- Land use data
- Discharge / water stage

Dense or sparse?

Gridded:

- Precipitation
- Temperature
- Elevation
- Land use

In-situ:

- Precipitation
- Temperature
- Discharge
- Water stage

Gridded

Advantages

- Uniform availability, often global
- Compare easily with models
- Generally straighforward formats (e.g. NetCDF)
- Efficient processing
- Different variables on the same grid
- Usually quality-controlled

Disadvantages

- Heavily dependent on gridding method
- Not suitable for comparison over specific points
- Usually derived from in-situ data
- Dataset resolution != actual resolution (!!!)

Gridding methods

- Basic categories:
 - Inverse Distance Weighting
 - Kriging
 - Spline Interpolation
 - Surface polygons

CAN HAVE DIFFERENT RESULTS!

Gridding methods

- **Basic categories:**
 - Inverse Distance Weighting
 - Kriging
 - Spline Interpolation
- Surface polygons **CAN HAVE DIFFERENT RESULTS!**

Hofstra, 2008

In-situ

Advantages

- No gridding/smoothing -> good for extremes
- Easy to compare with models (e.g. discharge at a given point)
- Do not hide anything from the user
- Dataset resolution == actual resolution
- Metadata!

Disadvantages

- Scarse data availability
- Often in very weird formats
- Often lacking quality control
- Hard to compare with gridded (e.g. climate) models (PR, T)

Common problems with in-situ measurements

Temporal and spatial problems:

- Short timescale
- Missing periods
- Low station density
- Missing timesteps

Data quality problems:

- Breaks and inhomogeneities
- Manual measurement errors
- Equipment errors and failures
- Weather-related measurement errors

Temporal and spatial problems

- Short timescale
- Low station density
- Missing timesteps
- Missing periods

Data quality problems

- Manual measurement errors
- Equipment errors and failures

po_discharge_1995-2005 - 7 Ponte Spessa

Inhomogeneities

- Changes in measurement time
- Station relocations
- Instrumentation upgrades
- Incorrect maintainance

Data quality problems

Measurement errors due to:

- Sensor icing
- Lack of power
- Vandalism
- Lack of maintenance
- Gauge undercatch

Data acquisition problems

EXAMPLE: PRECIPITATION GAUGE UNDERCATCH

- on average ~30% ?
- ~80% for extreme winter solid events?

Data acquisition problems

EXAMPLE: PRECIPITATION GAUGE UNDERCATCH

Macdonald and Pomeroy, 2008

An in-situ example

- Precipitation
- Hourly
- From different institutions
- ~2200 stations on average
- uneven spatial coverage
- 2000-2016

/home/clima-archive/afantini/chym/pioggiaoraria/netcdf/pioggiaoraria_swap_timechunk - 167 - 167

/home/clima-archive/afantini/chym/pioggiaoraria/netcdf/pioggiaoraria_swap_timechunk - 218 - 218

/home/clima-archive/afantini/chym/pioggiaoraria/netcdf/pioggiaoraria_swap_timechunk - 381 - 381

/home/clima-archive/afantini/chym/pioggiaoraria/netcdf/pioggiaoraria_swap_timechunk - 248 - 248

- Cut outliers over a given fixed threshold
- Variable threshold based on SD or IQR
- Remove consecutive suspicious values

- Cut outliers over a given fixed threshold
- Variable threshold based on SD or IQR
- Remove consecutive suspicious values

Timeseries are usually not enough to identify inhomogeneities and errors

- Cut outliers over a given fixed threshold
- Variable threshold based on SD or IQR
- Remove consecutive suspicious values

Timeseries are usually not enough to identify inhomogeneities and errors

- Cut outliers over a given fixed threshold
- Variable threshold based on SD or IQR
- Remove consecutive suspicious values

Timeseries are usually not enough to identify inhomogeneities and errors

Metadata

Spatial analysis

Metadata

Metadata

all the information that is not data itself

- Gauge type and characteristics
- Station history (relocations, upgrades...)
- Recorded changes in station environment
- News about extreme events (hard to find for old data)

Metadata

all the information that is not data itself

- Gauge type and characteristics
- Station history (relocations, upgrades...)
- Recorded changes in station environment
- News about extreme events (hard to find for old data)

WE OFTEN DO NOT HAVE ACCESS TO THIS, AND IT'S EXTREMELY TIME CONSUMING

Spatial analysis

Spatial analysis Maps + comparison to neighbouring stations

- Can be automated, once a criterion is chosen
- Possibilities for choosing reference stations: nearest neighbours, distance radius, height range, high correlation...

Spatial analysis Maps + comparison to neighbouring stations

- Can be automated, once a criterion is chosen
- Possibilities for choosing reference stations: nearest neighbours, distance radius, height range, high correlation...

REQUIRES HIGH ENOUGH STATION DENSITY HARD TO DO ON HIGHLY SPATIALLY VARIABLE FIELDS (e.g. PRECIPITATION) OR REGIONS (e.g. MOUNTAINS)

Even after correction...

2001-2016 mean precip

2001-2016 mean precip

2001-2016 mean precip

2001-2016 Precipitation probability density function (Northern Italy only)

A few remarks

The best approach to correct data is heavily dependent on:

- Application
- Variable (e.g. precipitation > discharge > temperature)
- Availability of metadata
- Station density
- Length of the records
- Manual resources available

A few remarks

The best approach to correct data is heavily dependent on:

- Application
- Variable (e.g. precipitation > discharge > temperature)
- Availability of metadata
- Station density
- Length of the records
- Manual resources available

A CORRECTION OBSERVATIONAL WILL OFTEN NOT DATA WITH VERY BE POSSIBLE HIGH UNCERTAINTY

But... what about other data sources?

RADAR

- Only for precipitation
- Depends heavily on location
- Can be shielded by topography
- Can be shielded by intense rain
- Frequent downtime

SATELLITE

- Precipitation, temperature
- ~ Worldwide
- The same algorithm is not necessarily good everywhere
- Resolution is generally poor (0.25° max)

They are just proxies! Requirement to choose an algorithm

TRMM ALGORITHMS CORR

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

a) TRMM ALGORITHMS CORR

They are just proxies!

Requirement to

choose an algorithm

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

But they are getting better and better!

DEMS Digital Elevation Models

- ASTER (30m)
- SRTM (30/90m)
- HydroSHEDS (90m)
- JAXA ALOS (30m)
- GTOPO (1km)
- WorldDEM (12m)
- Local, national DEMs

• ...

Usually satellite based, sometimes LIDAR

Another example: comparison over a small area

High resolution Italian official DEM:

- 20m resolution
- Obtained from military contour maps
- Comparison with:
 - ASTER
 - HS-c
 - HS-vf
 - JAXA
 - SRTM
 - TINITALY01
- All remapped on a 100m grid

DEM	Mean	StdDev	Q05	Median	Q95
ASTER	3.9	30.1	-21	1	36
HydroSHEDS Void Filled	0.4	57.8	-52	0	51
HydroSHEDS VF + Cond.	-16.4	59.7	-86	-11	29
JAXA AW3D30	5.0	19.6	-14	3	26
SRTM	4.7	14.1	-14	3	25
TINITALY/01	-0.6	14.1	-19.3	-0.6	17.7

- Average height differences of several meters
- 5th-95th bias percentile range up to 115 meters
- Standard deviation of bias up to 60m
- Even the best alternative DEM has a 5th-95th bias percentile range of 35 meters, more than enough to introduce issues in river routing!
- CHOICE OF DEM MATTERS!

Take home message

- Do not underestimate observational uncertainty
- Choose your data source based on your application
- Never-ever blindly trust un-checked obs data!!!