

Cetemps HYdrological Model

Marco Verdecchia - University of L'Aquila, Italy CHyM hydrological model Numerical and Physical theory and Applications for flood alert mapping

Developed by M. Verdecchia, E. Coppola, B. Tomassetti and L. Mariotti

CHyM - Architectural characteristics

- Distributed grid-based hydrological model;
- Different sets of precipitation data can be assimilated and merged in a hierarchical way at each hourly time step;
- □ It includes an explicit parameterization of different physical processes contributing to hydrological cycle;
- □ It runs in any geographical domain with any resolution up to DEM resolution, drainage network is extracted by a native algorithm implemented in CHyM code;
- □It runs in any Linux platforms;
- □ It doesn't use licensed software (GIS etc.), but graphic application are based on the GKS (low level library) developed by NCAR
- It reads, in the current implementation, precipitation and temperature fields from:
 - RegCM, MM5, WRF, Era-40, trimm, Persiann, rain gauge (any sparse data), radar, satellite estimation

CETEMPS Hydrological Model

CETEMPS Hydrological Model (Land Use)

Digital Elevation Model - Approx. Res: 2216.6 meters.

urban	gresss	broadl.	tundre	ir.gr.	in.wat.	868	ev.fo.	c.for.	m.for.	m.for.	broadl.	de.br.	crops	town
paddy	ir.eropl	grass.	aerub	f-woode	tofld	to-fid f	1d-mood	l-woods	conif	tundra	SEVENDA	graaa	shrubs	river

Flow Direction Map

DEM and LU arrays - Flow Dir. Array – Accum. Array (loop over CA Alg.) (loop over CA Alg.) (het are converted by the state of the state

Flow Test with "The Rolling Stones" Algorithm

 ${\it CETEMPS}\ {\it Hydrological}\ {\it Model}\ {\it Preprocessor}$

Flow Test with "The Rolling Stones" Algorithm

Applications of Cellular Automata Theory in CHyM model

${\it CETEMPS}$ Hydrological Model Preprocessor

′ I	000	000	0.00	0.05	0.60	0.00	085	ONO	08.0	205	000
	330	072	648	000	002	002	879	072	072	880	820
	824	824	824	828	838	888	842	848	858	880	952
	835	828	824	824	828	832	832	844	848	885	980
	822	818	822	825	83f	882	832	884	835	872	1010
	808	814	821	823	825	827	880	880	885	870	950
	800	808	812	818	823	824	824	824	828	862	915
	796	7 9 9	809	818	821	822	822	822	823	840	862
	880	825	799	808	816	818	818	819	819	824	845
	895	895	842	805	799	796	796	815	816	822	837
	922	922	910	848	825	796	805	818	823	823	831
	941	938	938	903	870	815	809		830	880	842
	9 08	902	902	894	880	84 8	823	831	838	844	844
	895	87Z	825	85Z	855	827	802	805	818	812	825
	862	846	810	810	782	784	785	795	787	852	870
	825	818	787	768	768	765	763	762	776	787	880
	828	730	765	763	768	760	75 8	765	772	778	852
	885	810	785	758	780	780	755	750	756	762	778
N	v W	N		NE	E		SE	S		SW	R'

Flow Direction Map - 6633 of 6633 no-flow points were corrected.

Applications of Cellular Automata Theory in CHyM model

In order to solve numerical singularities and merge different data set of observational/predicted data, CHyM model uses an original Cellular Automata based algorithms

A Cellular automata definition

- A cellular automata is a discrete dynamical system (Space, time and states of the system are discrete quantities)
- Each point in a regular spatial lattice, called a cell, can have anyone of a finite number of states
- The state of the cells in the lattice are updated according to a local rule
- All cells on the lattice are updated synchronously

How Cellular Automata theory is applied to solve DEM singularities

- CHyM grid is considered an aggregate of cellular automata
- The status of a cell corresponds to the value of a CHyM matrix (DEM)
- The state of the cells in the lattice is updated according to following rule

$$h_i \rightarrow h_i + \alpha \left(\sum_{j=1}^{8} \beta_j (h_j - h_i)\right)$$

- All cells on the lattice are updated synchronously
- Update ends when flow scheme is OK

CETEMPS Hydrological Model Preprocessor

980	872	8.8	845	862	822	875	872	2	805	-
888	8 <mark>8</mark> 8	8.4	s <mark>s</mark> a	a a	e <mark>s</mark> e	8	848	208	4 80-	45 5
885	-822	824	424	428-	432-	202	4 ##	8 4 8	485 -	480-
834	8.4	8 4	9 <mark>9</mark> 5	a <mark>e</mark> t	222	202	9 <mark>9</mark> 4	25	472	4910
824	384	824	884	825	827	880	взо	245	4 770-	450-
Break	824	844	824	-822	BRA	8 2 4	824	4::	462	
-52	824	BRS	8 <mark>8</mark> 3	pers.		BZS		824	4 ##	202
aro	-834		383	82S	883	8, S	823	Pres S	4 84	4 45-
ans -	835		-323>	8323	s <mark>z</mark> a	843	423-	8 2 3	223	43
923	3000	310	бұ в		8 <mark>7</mark> 3	P.S.	8 <mark>8</mark> 3	Pres S	-	∜? ≁
941	9 . 8	948	35	-37]>	883	825	823		aro	342
988	×					x				× 1
	9 % 2	9 <mark>9</mark> 2	824	380	848	8.3	881	808	844	8 4
845	982 842	9 9 2 8 2 5	8 9 4 8 9 4	800 815	848 817	823 802	8 81 8 4 5	8 0 8	8 4 4 8 4 2	₽ <u>/</u> 4 475
845 843	9943 8743 8745	992 825 842	8 94 8 9 2 810	8 85 7 8 2	844 827 724	823 802 785	881 945 795	8 0 8 8 0 7 0 7	84 82 853	¥4 ★255 826
845 862 845	994 942 942 944	912 825 842 747	834 832 810 788	887 815 712 718	849 847 784 785	8,23 8,92 7,95 7,93	881 995 795 795	906 9€9 18 19 19 19 19	8 4 9 /2 455 7 /7	244 ★255 ₩6 ★26
245 2452 2355 	992 942 942 943	91 2 825 840 717	834 832 810 788 783	8 85 782 788 788	847 847 744 746	8,13 8,12 7,85 7,83 7,84	81 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ele ele ele ele ele ele ele ele ele ele	8 € 450 7 6 7 6 7 6 7 6	

Applications of Cellular Automate Theory in CHYMonrodelints were corrected.

828 885	790 810	765 785	763 758	768 780	760 780	758 755	765 750	772 758	778 782	852 778
825	818	787	768	768	765	763	762	776	787	880
862	8 46	810	810	782	784	785	795	787	852	870
895	872	825	85Z	855	827	802	805	818	812	825
908	902	902	894	880	84 8	823	831	838	844	844
941	938	938	903	870	823	825	823	830	880	842
922	922	910	848	825	823	828	823	823	823	831
895	895	842	823	823	823	823	823	823	823	837
880	825	828	823	828	823	828	823	825	824	845
824	824	823	823	823	8 24	828	924	824	840	862
824	824	824	824	824	824	824	824	828	862	915
924	824	824	824	825	827	880	850	885	870	950
824	824	824	825	891	882	892	884	895	872	1010
825	620 620	0%4 094	824	030	899	046	840 944	848	005	20%

Flow Direction Map - 19 of 19 no-flow points were corrected.

Flow Direction Map - 6633 of 6633 no-flow points were corrected.

Applications of Cellular Automata Theory in CHyM model

Recipe for DEM pits and flat areas correction

Smooth DEM using CA rules until FD can be obtained for all the cells
 Generate streamflow network using smoothed DEM
 Use "true" DEM and modify ONLY the cells draining toward an higher cell

DEM Smooting Algorithm 1 (DSA1)

M Smooting Algorithm 2 (DSA2)

Applications of Cellular Automata Theory in CHyM model

Further improvements for flow direction extraction: anastomosis

The red cells locate the circulatory anastomosis

Mars surface - Drainage network simulation

Rain field sources

Feb 16, 2010 h: 18

May 23, 2010 h: 09 May 23, 2010 h: 10 May 23, 2010 h: 11 May 23, 2010 h: 12 May 23, 2010 h: 13 May 23, 2010 h: 14 May 23, 2010 h: 15 May 23, 2010 h: 16

- CHyM grid is considered an aggregate of cellular automata
- \checkmark The status of a cell corresponds to the value of precipitation
- The state of the cells in the lattice is updated according to following rule

$$h_i \rightarrow h_i + \alpha \left(\sum_{j=1}^{8} \beta_j (h_j - h_i)\right)$$

But cells corresponding to rain gauges or defined in a previous Module are not updated

All cells on the lattice are updated synchronously

Pdate ends when a stable state is reached Marco Verdecchia – University of L'Aquila, Italy - CHyM model for flood alert

manning

E. Coppola, B. Tomassetti, L. Mariotti, M. Verdecchia and G. Visconti, Cellular automata algorithms for drainage network extraction and rainfall data assimilation, Hydrological Science Journal, 52(3), 2007.

According to the Hamilton (Leonardo)rinciple, CHyM model assumes that surface flow occur with a strong preferential direction.

«...Ogni azione fatta dalla natura non si pò fare con più brieve modo co' medesimi mezzi... Date le cause la natura partorisce li effetti per i più brievi modi che far si possa...»

Leonardo da Vinci (1452-1519)

Hamilton's principle or principle of stationary action

William Rowan Hamilton (1805-1865)

Parametrization of physical processes contributing to hydrological cycle Channel flow

Based on the kinematic wave approximation (*Lighthill and Whitam, 1955*) of the shallow water wave, the equations used by CHYM model to simulate the surface routing overland and for channel flow, are the continuity and momentum conservation equations:

S is longitudinal bed slope of the flow element , n the Manning's roughness coefficient whileR is the hydraulic radius that can be written as a linear function of the drained area

Parametrization of physical processes contributing to hydrological cycle Surface runoff

 φ is flow rate over the longitudinal dimension (m²/sec) of the grid point and ξ is the rate of water inflow per unit of area (m/sec).

The momentum equation is, also in this case, a linear relationship between the flow rate and the water depth, but the Manning's roughness coefficient is increased by a factor M_n to take into account that flow occur with lower speed. The value of M_n is typically around 4.5 and the optimal value is established, for the specific geographical domain, during the calibration phase.

Melting

$$M = T_{\mathbb{F}}T + S_{RF}(1-\alpha)G_{\downarrow}$$
$$G_{\downarrow} = C_{s}A_{tr}\sin(\Psi)$$

$$A_{tr} = [0.6 + 0.2\sin(\Psi)](1.0 - 0.4\sigma_{H})(1.0 - 0.7\sigma_{M})(1.0 - 0.4\sigma_{L})$$

$$\sin(\Psi) = \sin(\varphi)\sin(\delta_s) - \cos(\varphi)\cos(\delta_s)\cos(\frac{2\pi t_{utc}}{t_d} - \lambda)$$

 T_f is set 0.005 mm hour⁻¹ °C⁻¹ and it is specified by cpar(4) S_{RF} is set to 0.0094 mm hour⁻¹ m²/(watt ⁰C) and is specified by cpar(5)

Parametrization of physical processes contributing to hydrological cycle <u>Return flow</u>

CHyM model parametrizes the return flow assuming that its contribution to surface flow is proportional to the total infiltration in the upstream basin during the last N days.

$R \downarrow f = \theta \iint Up \uparrow I(t,s) dt ds$

The space integral is calculated over the whole upstream basin of each cell, while the time integral is carried out over the last N days, being N a value to be optimized during the calibration process. Typical value for small and medium basins are N = 90 days, θ = 5 × 10–7 mm hour⁻¹ km⁻²

manning

Flood alert mapping Validation of flood alarm index

Cetemps.aquila.infn.it/chymop/

✓ C^e Q Search

☑ ↓

Domain 01 - Po Basin NO HIGH RESOLUTION WRF FORECAST AVAILABLE FOR THIS RUN Last Simulation Fri Jun 9 04:02:51 CEST 2017	Stress Index	Stress Index
Domain 02 - Liguria NO HIGH RESOLUTION WRF FORECAST AVAILABLE FOR THIS RUN Last Simulation Fri Jun 9 06:07:08 CEST 2017	CRW - CR - (mm/kg)	(R) = - R0 hadre (long, h)

Po Basin simulation -

ACQWA Meeting

22-24/09/2010

April 12, 2005 h: 12

Po river - Flow discharge (m3/sec)

A first (very) important step:

The map of accumulated precipitation CANNOT be considered a flood alert map

Simulation from November 15, 2017 h: 0.00 to November 15, 2017 h: 12.00

Simulation from November 15, 2017 h: 0.00 UTC to November 16, 2017 h: 0.00 UTC

Predicting possible severe hydrological events Flood alert mapping

- A deterministic prediction of discharge is often difficult because reliable time series of flow discharge are not always available, especially for small basins
- Floods are often observed for small basin where model calibration is difficult
- Flood occurrence depends also on the morphologic characteristics of the river
- It is not straightforward to establish a discharge value above which flood is expected to occur.

Flood alert mapping Definition of alarm index – CAI (CHyM Alarm index)

 $CAI(t, j) = \frac{\int_{t-\Delta T_i}^{t} \int_{Up_j} P(t, s) dt ds}{\int_{Up_i}^{t} \int_{Up_i}^{t} ds}$

Flood alert mapping Average runoff time is calculated in four steps

Flood alert mapping

Definition of alarm index – BDD (Best Discharge-based Drainage alarm index)

$$BDD_i(t_1 - t_2) = \frac{\max_{t_1 \to t_2}(Q_i(t))}{R_i^2}$$

$$R = \beta + \gamma D A^{\delta}$$

$$\alpha = \frac{S^{1/2}R^{2/3}}{n} \qquad Q = \alpha A^m$$

Flood alert mapping

Application to different case studies – Genova – October 2014

Flood alert mapping operationally available at URL http://cetemps.aquila.infn.it/chymop

Water Resources in Developing Countries: Planning and Management in Face of Hydroclimatological Extremes and Variability

Flood alert mapping

Application to different case studies – Abruzzo region – Sep 2012

Flood alert mapping

Application to different case studies – Abruzzo region – Sep. 2012

Water Resources in Developing Countries: Planning and Management in Face of Hydroclimatological Extremes and Variability

Flood alert mapping

Application to different case studies – Abruzzo region – Sep. 2012

✓ C Q Search

emergency.copernicus.eu/mapping/list-of-components/EMSR067

YouTube Movie

manning

ICTF

Flood alert mapping Application to different climatology

Lab session

Few suggestions about model calibration and CHyM (any) model application

* A model cannot be considered as "black box" The model "does not work properly" is the "normal condition"

* Model is just an approximation of the actual world

* A "Physical" solution is always better than a "numerical" solution

A first suggestion:

Select the process(es) whose numerical implementation must be refined and a period where such process is more important

A second suggestion:

Change only one parameter to evaluate the effect of the single parameter

6			CHyM Libraries - Mozilla Firefox			_ 0
<u>F</u> ile <u>E</u> dit	<u>V</u> iew Hi	i <u>s</u> tory	<u>Bookmarks</u>			
🔁 Zimbra	a: Inbox		× CHyM Libraries × +			
$\overleftarrow{\leftarrow}$ \rightarrow	(i) cetem	nps.aqu	ila.infn.it/mvlib/11.html	✿ Search		C' 🏠
			Table 4. Arrays defined and used inside CHyM fortran code - The list is not	yet complete		
	Array name	Save code	Meaning	Modified or Updated by	Used by	
	accl	*	Acclivity field. It is expressed as the sinus of the terrein slope in the direction of surface flow.	buildacclivitymap	runoffspeed	
	alfa		Surface runoff speed (m/sec), it also corresponds to the proportionality factor between flow discharge Q and wet section area A in the momentum equation.	runoffspeed (also automatically calculated after reading static field)	runoff	
		ara	Surfce water available for runoff. This field is not stored in a specific array, but it is saved after the water balance has been calculated for each cell. The routine chymreaddynamicfields stores the data in work array <i>wkm1</i>	rainfall, evapotranspiration, melting, groundwater	СНуМ	
	area	*	Area of each cell (Km²)	areamatrix	cvmm2m3, cvm32mm, runoff	
	bdd		BDD alarm index calculate as a function of flow-discharge	bddfield		
	bwet	wet	Wet area (m²)	runoff		
	deepw	dgw	mm of water infiltrated in the deep layer in the last N days (see component 7 of cpar vector described below)	groundwater	returnflow	
	dem	*	Digital Elevartion Model (m)	buiddem,angioplasty, demsmoothing,demholefilling	СНуМ	
	ddeepw		Drained infiltrated water in the deep layer in the last N days (see component 7 of cpar vector described below)	groundwater	returnflow	
	drai	*	Total drained area of each cell (Km²)	areamatrix	riveronlanduse, calibration, returnflow, runoffspeed	
	dx		Channel lenght (m) for each cell.	runoffspeed (also automatically calculated after reading static field)	runoff	
	evap	evp	Actual evapotranspiration term (mm)	potevapotransp	evapotranspiration	
	fmap	*	Coded value for surface flow direction, 1 means North-West, 2 means North, 3 means North-East, 3 means North-East, 4 means East, 5 means South-East, 6 means South, 7 means South-West, 8 means West. estabilishfowdir, angioplasty, dircorrflow	buildacclivitymap, demsmoothing	runoff, runoffspeed	
	gh2o	gwt	Total content of water for each cell (m ³)	groundwater, evapotranspiration (is it right?)		
	lon	*	Longitude of each grid point	acquirescriptpar	СНуМ	
	lat	*	Latitude of each grid point	acquirescriptpar	СНуМ	
	luse	*	Land Use (coded value)	buildlandusemap,calibration, riveronlanduse	СНуМ	
	modis		A real array containing a coded value, 1 means that the cell is covered by snow, 0 means that the cell is not covered by snow.	snowcover	snowcv	
	port	por	Flow discharge (m³/sec)	runoff		
				rainfall, datisparsi,		

Vector name Calculated, set or updated by Used by Contains the sequence of longitude indexes from the mouth up to the spring of the selected river. The sequence is indexes is rebuilt by the illerary routine chymasimore; the vector is dimensioned nion-rider but the number of point actually belonging to the sequence is inv(non-rial) ploting writeoutile inv(non-rial) seved in the integrate valuable nexty. The triver can be selected by the CS parameter RVER and the river mouths of the sequence integrate walue is nexty. The triver can be selected by the CS parameter RVER and the river mouths of the sequence integrate as rive vector but for latitude indexes ploting writeoutile Contains the calibration parameters, the list of different components follows: I. Return flow factor, the return flow contribute is proportional to the this factor, to the drained area and the average precipitation in the upstream basin in the parameter par(7) descript below. Used inside returnifow subroutine. Default=3.8e07 plotting writeoutile cpar(52) C. Alpha coefficient for the calculus of hydraulic radius. Used inside runoffspeed subroutine. Default=0.050 set as rive vector but mole with returnifow subroutine. Default=0.050 set as rive vector but mole with return flow calibration for the return flow used in side runoffspeed subroutine. Default=5. calibration (see description) cpar(52) 6. Reverland threshold (Nm), Used inside runoffspeed subroutine. Default=5.05 calibration (see description) cpar(52)		Other vectors defined and used inside CHyM fortran code - The list is not y	et complete	
Best Contains the sequence of longitude indexes from the mouth up to the spring of the selected river. The sequence is rebuilt by saved in the integer variable <i>nselp</i> . The river can be selected by the ch parameter RIVER and the river mouths of the selected utility.plottingwriteoutfileinv(non-nia)same as inv vector but for latitude indexesplottingowniteoutfileplottingwriteoutfileinv(non-nia)same as inv vector but for latitude indexesplottinginviteoutfileinviteoutfilecontains the calibration parameters, the list of different components follows:plottinginviteoutfile. Return flow factor, the return flow contribute is proportional to the this factor, to the drained area and the average precipitation in the upstream basin in the number N is established by the parameter cpar(7) descript below. Used inside <i>numfspeed</i> subroutine. Default=0.0015selence. Alpha coefficient for the calculus of hydraulic radius. Used inside <i>runoffspeed</i> subroutine. Default=0.005selencecalibration. Beat coefficient for the calculus of hydraulic radius. Used inside <i>runoffspeed</i> subroutine. Default=0.005selenceselence. Contains the calibration parameters, the last of inference inside <i>runoffspeed</i> subroutine. Default=0.005selenceselenceselence. Alpha coefficient for the calculus of hydraulic radius. Used inside <i>runoffspeed</i> subroutine. Default=0.005selenceselenceselence. Alpha coefficient for the calculus of hydraulic radius. Used inside <i>runoffspeed</i> subroutine. Default=0.001selenceselenceselence. Optic unit used by different connolation te subroutine. Default=0.005selenceselenc	Vector name	Meaning	Calculated, set or updated by	Used by
jriv(non-nial)Same as inv vector but for latitude indexesplottingwriteoutfileContains the calibration parameters, the list of different components follows: 1. Return flow factor, the return flow contribute is proportional to the this factor, to the drained area and the average precipitation in the upstream basin in the past N days; the number N is established by the parameter cpar(7) descript below. Used inside return/flow subroutine. Default=4.8e-07 2. Apha coefficient for the calculus of hydraulic radius. Used inside <i>runoffspeed</i> subroutine. Default=0.0015 3. Beta coefficient for the calculus of hydraulic radius. Used inside <i>runoffspeed</i> subroutine. Default=0.0094 6. River/land threshold (Km ²). Used inside <i>runoffspeed</i> subroutine. Default=20.00 7. Number of days to consider for return flow Subroutine. Default=0.0094 6. River/land threshold (Km ²). Used inside <i>runoffspeed</i> subroutine. Default=20.00 10. Precipitation threshold (Km ²). Sub etil no definisted melting subroutine. Default=30.00 1. Return durbeshold (Km ²). Sub etil no definisted melting subroutine. Default=40.00 1. Return durbeshold (Km ²). Sub etil no definisted melting subroutine. Default=20.0. 1. Return durbeshold (Km ²). Sub etil no definiste melting subroutine. Default=40.00 1. Return durbeshold (Km ²). Above this threshold return/flow subroutine. Default=40.00 1. Return durbeshold (Km ²). Sub etil no definiste melting subroutine. Default=40.00 1. Return durbeshold (Km ²). Sub etil no different routines for 1/0 operations, specific use of each component follow: 1. uriteintes0 2. Logic unit used to write CHM long 3. uriteintes0 2. Logic unit used to write CHM long 3. Uriteintes0 2. Logic unit used to wr	iriv(nlon+nlat)	Contains the sequence of longitude indexes from the mouth up to the spring of the selected river. The sequence of indexes is rebuilt by the library routine <i>chymsalmone</i> ; the vector is dimensioned <i>nlon+nlat</i> but the number of point actually belonging to the sequence is saved in the integer variable <i>nselrp</i> . The river can be selected by the csh parameter RIVER and the river mouths of the selected geographical domain can be visualized setting the value 8 for the PLOT option or using the the command "show river from CHyMLab utility.	plotting	writeoutfile
Contains the calibration parameters, the list of different components follows:I. Return flow factor, the return flow contribute is proportional to the this factor, to the drained area and the average precipitation in the upstream basin in the past N days; the number N is established by the parameter cpar(7) descript below. Used inside returnflow subroutine. Default=0.0015I. Return flow factor, the return flow contribute is proportional to the this factor, to the drained area and the average precipitation in the upstream basin in the past N days; the number N is established by the parameter cpar(7) descript below. Used inside returnflow subroutine. Default=0.0015I. Return flow factor, the return flow contribute. Default=0.0015I. Return flow factor. Used inside runoffspeed subroutine. Default=0.0030I. Set a coefficient for the calculus of hydraulic radius. Used inside runoffspeed subroutine. Default=100.003I. Set a coefficient for the calculus of hydraulic radius. Used inside returnflow subroutine. Default=200.0034I. Set a coefficient for channel flow. Used inside runoffspeed subroutine. Default=200.0034I. Set a coefficient for channel flow. Used inside returnflow subroutine. Default=200.01Processite of the calculus of hydraulic radius is a sperate return flow subroutine. Default=200.01I. Set a coefficient for channel flow. Used inside returnflow subroutine. Default=200.01I. Set a coefficient for channel flow. Used inside returnflow subroutine. Default=200.01I. Set a coefficient for return flow course channel flow. Used inside returnflow subroutine. Default=200.01I. Set a coefficient for channel flow. Used inside returnflow subroutine. Default=200.01I. Set a coefficient for return flow course channel flow. Used inside returnflow subroutine. Default=200.01I. Set a coefficient for return flow course channel flow. Used inside runoffspeed subroutine. Default=200.01 <td>jriv(nlon+nlat)</td> <td>Same as iriv vector but for latitude indexes</td> <td>plotting</td> <td>writeoutfile</td>	jriv(nlon+nlat)	Same as iriv vector but for latitude indexes	plotting	writeoutfile
evc(110,12)Monthly average potential evaporation (mm) depending on land use type (first index) and month (second index).chymdata modulepotevapotranspinf(110)Infiltration and interception capacity (mm) for each land use typefirst index) and month (second index).chymbd, calibrationgroundwaterLogic units used by different routines for I/O operations, specific use of each component follow:1. writeintes02. MAIN1. writeintes02. Logic unit used to write CHYM output2. Logic unit used to write CHYM output in grads format1. writeintes02. CHYM3. writeoutfile3. Logic unit used to write CHYM output file3. Logic unit used to read MMS output file5. potevapotransp6. rainfall5. potevapotransp6. Logic unit used to read or write temperature file6. Logic unit used to read or write precipitation file6. rainfall5. potevapotransp6. rainfallmanning(110)Maning coefficient for each landuse type (m/sec)6. chymbd, calibrationfruotfispeedperc(110)Percolation from surface to deep ground (mm/hour) for each land use type6. chymbd, calibrationgroundwater	cpar(52)	 Contains the calibration parameters, the list of different components follows: 1. Return flow factor, the return flow contribute is proportional to the this factor, to the drained area and the average precipitation in the upstream basin in the past N days; the number N is established by the parameter cpar(7) descript below. Used inside <i>returnflow</i> subroutine. Default=4.8e-07 2. Alpha coefficient for the calculus of hydraulic radius. Used inside <i>runoffspeed</i> subroutine. Default=0.0015 3. Beta coefficient for the calculus of hydraulic radius. Used inside <i>runoffspeed</i> subroutine. Default=0.050 4. Melting temperature factor. Used inside <i>melting</i> subroutine. Default=0.050 5. Melting shortwave radiation factor. Used inside <i>runoffspeed</i> and <i>riveronlanduse</i> subroutines. Default=100.0 7. Number of days to consider for return flow. Used inside <i>returnflow</i> subroutine. Default=90 8. Reduction of manning coefficient for channel flow. Used inside <i>runoffspeed</i> subroutine. Default=4.5 9. River/land threshold (Km²). Above this threshold <i>returnflowfactor</i> is computed. Used inside <i>returnflow</i> subroutine. Default=200.0 10. Precipitation threshold (mm) above which flow occur over channel instead of land (see cpar(6) discussed above) 11. Beta coefficient used to calculate BDD index (def=0.55). In principal this parameter should be the same of cpar(3), but it is set in a separate way in order to avoid confusions between different version. 	calibration	(see description)
inf(110)Infiltration and interception capacity (mm) for each land use typegroundwaterlogic units used by different routines for I/O operations, specific use of each component follow:1. writeintes01. writeintes01. Logic unit used to write CHyM output2. CHyM output3. gradsheader3. writeoutfile2. Logic unit used to write CHyM output3. Logic unit used to write CHyM output in grads format3. writeoutfile3. writeoutfile3. Logic unit used to read MM5 output file5. potevapotransp6. rainfall5. potevapotransp6. Logic unit used to read or write precipitation file6. rainfall5. potevapotransp6. rainfallmanning(110)Maning coefficient for each landuse type (m/sec)chymbd, calibrationrunoffspeedperc(110)Percolation from surface to deep ground (mm/hour) for each land use typechymbd, calibrationgroundwater	evc(110,12)	Monthly average potential evaporation (mm) depending on land use type (first index) and month (second index).	chymdata module	potevapotransp
Logic units used by different routines for I/O operations, specific use of each component follow:1. writeintes01. writeintes01. writeoutfile1. Logic unit used to write CHyM output2. Logic unit used to write CHyM log3. gradsheader4. definerainsources3. gradsheader4. definerainsources5. potevapotransp6. rainfall1. unit used to read Or write temperature file6. Logic unit used to read or write precipitation file6. rainfall7. mm5data7. potevapotransp6. rainfall1. maning(110)Manning coefficient for each landuse type (m/sec)6. control form surface to deep ground (mm/hour) for each land use type6. control form surface to deep ground (mm/hour) for each land use type7. groundwater	infi(110)	Infiltration and interception capacity (mm) for each land use type	chymbd, calibration	groundwater
manning(110)Manning coefficient for each landuse type (m/sec)chymbd, calibrationrunoffspeedperc(110)Percolation from surface to deep ground (mm/hour) for each land use typechymbd, calibrationgroundwater	logun(10)	Logic units used by different routines for I/O operations, specific use of each component follow: Logic unit used to write CHyM output Logic unit used to write CHyM log Logic unit used to write CHyM output in grads format Logic unit used to read MM5 output file Logic unit used to read or write temperature file Logic unit used to read or write precipitation file 	1. writeintes0 2. MAIN 3. gradsheader 4. definerainsources 5. potevapotransp 6. rainfall	1. writeoutfile 2. CHyM 3. writeoutfile 4. mm5data 5. potevapotransp 6. rainfall
perc(110) Percolation from surface to deep ground (mm/hour) for each land use type chymbd, calibration groundwater	manning(110)	Manning coefficient for each landuse type (m/sec)	chymbd, calibration	runoffspeed
	perc(110)	Percolation from surface to deep ground (mm/hour) for each land use type	chymbd, calibration	groundwater


```
subroutine calibration
use chymdata , only : cpar,infi,perc,lago,fiume
implicit none
```

```
cpar( 1)=4.8e-07! Return flow factor (4.8e-07)
cpar(2)=0.0015 ! Alpha coefficients for hydraulic radius (0.0015)
cpar( 3)=0.050 ! Beta coefficients for hydraulic radius
cpar( 4)=0.050 ! Melting temperature factor (0.050)
cpar( 5)=0.0094 ! Melting shortwave rad. factor (0.0094)
cpar( 6)=100.0 ! River/land threshold (Km2) (500.0)
cpar( 7)=90.0
               ! Number of days to consider for return flow (90)
cpar( 8)=4.5
               ! Reduction of land/channel manning coefficient
               ! River/land threshold (Km2) for returnflow
cpar( 9)=200.0
cpar(10)=100.0
               ! Rain Thresh above which channel flow occur
cpar(11)=0.55
                ! Parameter beta used to calculate BDD
cpar(12:20)=0.0 ! Not yet used
```

```
infi= 40.0
infi(lago)=0.0
infi(fiume)=0.0
infi(12)=0.0 ! Ice
```

```
perc=infi*0.01
call basincalibration
return
end
```


Based on the kinematic wave approximation (*Lighthill and Whitam, 1955*) of the shallow water wave, the equations used by CHYM model to simulate the surface routing overland and for channel flow, are the continuity and momentum conservation equations:

S is longitudinal bed slope of the flow element , **n** the Manning's roughness coefficient while **R** is the hydraulic radius that can be written as a linear function of the drained area

Channel flow

 $\partial \varphi / \partial x + \partial y / \partial t = \xi$

cpar(6) is drained area threshold (tipycally 100 Km²) cpar(8) is the increasing coefficient of Manning equation cpar(2) and cpar(3) are β and γ coefficients to calculate the hydraulic radius

Melting

$$M = T_{\mathbb{F}}T + S_{RF}(1-\alpha)G_{\downarrow}$$
$$G_{\downarrow} = C_{s}A_{tr}\sin(\Psi)$$

$$A_{tr} = [0.6 + 0.2\sin(\Psi)](1.0 - 0.4\sigma_{H})(1.0 - 0.7\sigma_{M})(1.0 - 0.4\sigma_{L})$$

$$\sin(\Psi) = \sin(\varphi)\sin(\delta_s) - \cos(\varphi)\cos(\delta_s)\cos(\frac{2\pi t_{utc}}{t_d} - \lambda)$$

 T_f is set 0.005 mm hour⁻¹ °C⁻¹ and it is specified by cpar(4) S_{RF} is set to 0.0094 mm hour⁻¹ m²/(watt ⁰C) and is specified by cpar(5)

Return flow

CHyM model parametrizes the return flow assuming that its contribution to surface flow is proportional to the total infiltration in the upstream basin during the last N days.

$R \downarrow f = \theta \int UpStream \uparrow M \int N - Days \uparrow M I(t,s) dt ds$

The space integral is calculated over the whole upstream basin of each cell, while the time integral is carried out over the last N days, being N a value to be optimized during the calibration process. Typical value for small and medium basins are N = 90 days (cpar(7)), θ = 5 × 10–7 mm hour⁻¹ km⁻² (cpar(1))

Evapotranspiration

The reference evapotranspiration $ET\downarrow 0$ is approximated as a linear function of temperature and is calculated according to:

 $ET \downarrow 0 = \alpha + \beta N W \downarrow ta \ (h,T)T$

According to Thornthwaite and Mather (1957), CHyM model calculates the potential evapotranspiration $ET \downarrow P$, for each elementary cell, as a function of the evapotranspiration in saturated soil conditions $ET \downarrow 0$

 $ET \downarrow P = K \downarrow c ET \downarrow 0$

being $K \downarrow c$ the so-called crop factor that is a function of crop type.

Evapotranspiration

The potential evapotranspiration is computed as a function of the evapotranspiration in saturated soil conditions (Thornthwaite and Mather, 1957), according to the formula:

 $ET_p = k_c ET_0$ Kc is set in the array evc(LU,MON) of CHyM code

where k_c is the crop factor that is a function of crop type. The reference evapotranspiration ET_0 is approximated as a linear function of temperature and is calculated according to:

```
ET_0 = \alpha + \beta NW_{ta}(h, T)T
```


