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• Metal lithium anodes are excellent alternatives for Li-ion batteries 

• nonuniform plating, swelling of anode causes growth of Li-dendrites 

• atomistic multiscale quantum and classical MD simulations

• a full nanobattery to determine properties of the SEI

• speciation of interfaces with Li-metal anodes 

• Electrolytes: sulfides, halogenated phosphor-sulfides, halogenated 

nitrates, few others

• full nanobatteries, thus, a cathode: sulfur and spinel structures are also 

potential alternatives 

mailto:seminario@tamu.edu


Background Information

• Vehicles move our economy 

• Vehicles transport 11 billion tons of freight/year

• Vehicles move more than $35 billion of goods each day

• Vehicles move people more than 3 trillion vehicle-miles/y

• Economy grow requires transportation

• Transportation requires energy 

• Transportation accounts for

• 30% of total U.S. energy needs

• 70% of U.S. petroleum use



• Oil price volatility affects:

• National economy

• Commercial enterprises

• Household budgets. 

• U.S. household spends 20% of family expenditures on transportation 

• The most expensive spending category after housing

• To enable future economic growth

• Increase transportation affordability



Lithium-ion batteries have made tremendous progress in the last two decades 

Created worldwide demand for electric vehicles (EVs)

Problems

Liquid organic electrolyte is highly reactive and flammable

Solution: Solid State Batteries

Solid Li-ion conducting materials in place of liquid electrolytes 

Solid electrolyte materials are nonflammable

Allow more robust cell operation

Integration of metal-based anodes

Improve: cost, energy density, cycle life

Challenges

low conductivity, 

poor voltage stability

inadequate mechanical properties





Simulations of the First Charging cycles of Nanobatteries

Learning  from trajectories of 

Li-ions



Li Capture by Graphitic C

q = 0, m=1

C–Li = 1.98 Å

E = -239.03445 a.u.

q = 1, m = 2

C–Li = 2.38 Å

E = -238.80736 a.u.

q = 0, m = 1

C–Li = 2.08 Å

E =  -1529.30186 a.u.

q = 1, m = 2

C–Li = 2.47 Å

E = -1529.08439 a.u.

q = 0, m = 1

C–Li = 2.62 Å

E = -1863.95778 a.u.
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The lucky formation 
of a solid electrolyte 
interphase between 
the liquid electrolyte 
and the solid anode 
was of paramount 
importance for the 
success of present  
Li-ion batteries





~500 nm
~50 nm

SiO2

Au

Si

Ti or Cr 
interface



GENIP

13Electrolyte-SEI-Anode Models

+ –
Li+

Anode
LixSiy

Cathode
(Lithium)

Electrolyte
Li+ conducting

C
u

rr
en

t 
co

lle
ct

o
r

C
u

rr
en

t 
co

lle
ct

o
r

SEI

e-

e-

Charge

Discharge

Charge

Discharge

I + V  -

LixSiySEIElectrolyte

Benitez & Seminario, Electron Transport and Electrolyte 
Reduction in the SEI of Rechargeable LIB Si Anodes. 
J. Phys. Chem. C 2016, 120 (32), 17978-17988



Green’s Function Theory—Density Functional Theory Approach

Hamiltonian H and overlap S

Green function

Self-energies and couplings of electrodes

Transmission function T and current I

𝐻𝐾𝑆Ψ = ɛ𝑆Ψ 𝐻𝐾𝑆𝑆
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1Derosa & Seminario, Electron Transport through Single Molecules:  

Scattering Treatment Using Density Functional and Green’s Function 

Theories. JPC-B 2001, 105, 471

CALCULATION OF CURRENT-VOLTAGE CHARACTERISTICS1

(LiF)n and (Li2CO3)n: 

PBE&HSE06/6-311+G//B3PW91/6-31G(d)/LANL2DZ 

Au DOS 

Programs: Gaussian-09, CRYSTAL, GENIP



CURRENT-VOLTAGE CHARACTERSITICS 15
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317 (C2H4CO3)  +   21 (Li+PF6
-)   1M 

Silicon anode

Galvez, Ponce, & Seminario, "Molecular dynamics 

simulations of the first charge of a Li-ion—Si-anode 

nanobattery." J. Mol. Mod. 23 (4): 120 2017

MEAM
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Silicon—ethylene carbonate interphase when an electric field of 4.5 Volt/Å is applied

0 ps 0.3 ps 

0.6 ps 1 ps Swelling 
upon 

Lithiation
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Electrode Expansion Due to Lithiation
Si NPs anode in electrolyte solution, ethylene carbonate + LiPF6 1M

Questions for LIB: Si anodes:  Li+ diffusion in SEI film? SEI mechanics/Si expansion?
Li intercalation mechanical damage? Si-SEI interplay/cell performance?
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Li-diffusion in the silicon anode during charging

0 ps / 0 Li-ions

96 ps / 506 Li-ions

Diffusion of Li-ion through amorphous LiSi alloy seems greater than in 

a silicon crystal

The MSD for same region (yellow squares) at 0 ps (pristine Si) and at 

96 ps (SiLi alloy)
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Volume expansion during charging

• Number of Li in anode increases linearly with time

• Volume ratio (V/Vo) shows a linear behavior with number lithium.

• Volume increases linearly with time. This behavior is simulated in the next work, in which we study the cracking due to SiLi expansion.

Jerliu et al. (2014) J Phys 
Chem C 118(18):9395–
9399







core sphere radius

SixLiy

LiF SEI

Cracking (by an expanding core)  of SixLiy  

covered by a SEI of LiF.  Core expanding 

sphere radius goes from 0 to 56 Å 

Å 

SEI Cracking



Front view of the extracted LiF Shell Top view of the 

extracted LiF Shell

Cracking on LiF Shell

A piece of the LiF is extracted from

the whole shell to study the cracking

mechanism.

Initially the shell has a width 12.3 Å
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Dendrites formed in cracks of a Li-anode during charge
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2-190 ps 2-190 ps

Dendrites formed in cracks of a Li-anode during charge
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