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Using artificial intelligence to 
discover new materials



How to discover new materials?

• Open Quantum Materials Database (OQMD)
• Machine Learning of materials datasets to 
accelerate Materials Discovery



AI as a tool to accelerate 
discovery





Algorithms vs. Learning



Machine Learning in Real Life: 
Netflix



Materials Informatics Workflow
Collect (Data) Process 

(Data)
Represent 
(Material)

Learn 
(Property)
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1) Data:  Training and Test Datasets
2) Materials Representation:  How do we tell our machine 

what a material is?
3) Machine Learning Algorithm:  Many options in available 

toolkits (Weka, scikit-learn, etc.).  For this talk, mostly 
ensembles of decision trees and (convolution) neural 
nets.



High-Throughput Computational Approaches:
The Open Quantum Materials Database (OQMD)

• Large-scale DFT 
database of known 
(~50K) and 
hypothetical (~500K) 
inorganic crystalline 
compounds

• Open, online, freely 
available (oqmd.org)

• Automatic computation 
of phase stability 
(arbitrary # of 
components)

OQMD: Saal et al. JOM 2013, Kirklin et al. npj Comp. Mater., 2015, http://www.oqmd.org

+ ICSD
+ more…

Credit: Wikipedia for computer images

?



Materials Informatics Workflow

Collect Process Represent Learn
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How can one create problem-independent representations?



What is a representation?
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦 = 𝒇𝒇 𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴

Representation of material
Ex: Attributes = g(𝑥𝑥𝐻𝐻,𝑥𝑥𝐻𝐻𝐻𝐻 , …)

What does a representation need?
Completeness: Differentiate materials
Efficiency: Quick to compute
Accuracy: Capture important effects
Diversity: Many possible properties

|ΔΧ|

NaPb

LiF

LiF

Set of quantitative attributes that describe a material

𝑥𝑥Na

NaPb

Na2O

Na2O

How do we create “general-purpose” representations?



Meredig et al. PRB (2014), 094104 Ghiringhelli et al. PRL (2015), 105503

Chatterjee et al. MS&T (2007), 819

Retained γ

Seko et al. PRB (2014), 054303 Srinivasan, Rajan. Materials (2013), 279

Crystal Structure

Fischer et al. Nat. Mat. (2006), 641

Eg

ΔH ΔH

Tm

ML + Materials = “Materials Informatics”

11



Focus #1: Representations 
based on composition alone
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Property = 𝑓𝑓 𝐶𝐶𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝐶𝐶Property Attributes Reference
Crystal Structure VE, ΔX, nav, Δnws

1/3 Kong et al., 2012
Band Gap ΔX, Z, Tm, R, nav Srinivasan & Rajan, 2013
Formation Energy ΔX, Z, ns|p|d|f, row, col Meredig et al., 2014
Melting Point Z, m, n, rcov, I, X, … Seko et al., 2014
Δ𝐻𝐻𝑓𝑓: Rocksalt – Wurtzsite IP, EA, rs, rp, … Ghiringhelli et al., 2015

Observations: 
• Different properties, different attributes
• All based on elemental property statistics
Our Strategy: Create set that includes all of these and 
more



Machine Learning Strategy
• Recall basic calculation recipe:

– Composition
– Structure

• People focus on predicting/solving 
structure, but what if we could predict 
properties without it?

• Application: Discovery of new ternary 
compounds AxByCz



Structure-Independent Model
Instead of mapping an atomic configuration 
to properties, i.e.,

we instead train a formation energy model 
on composition only:



General-Use Attributes
Elemental Property Stats.: Mean Tm, Range Z, …

6 Statistics: Mean, variance, max, min, range, mode
22 Elemental Properties: Z, EN, Row, Column, Radius, …

Stoichiometric: # Components, 𝑥𝑥𝑍𝑍 𝑝𝑝

Electronic Structure Based: Fraction p Electrons, …

Ionicity: Can form Ionic, % Ionic Character, …

Ward, Agrawal, Choudhary, Wolverton,  npj Computational Materials 2, 16028 (2016).

https://bitbucket.org/wolverton/magpie

http://bitbucket.org/wolverton/magpie


Predictions for Discovery:  
4500 new stable compounds

Machine learning model can predict the thermodynamic 
stability of arbitrary compositions without any other input (i.e., 
without the structure).

Six orders of magnitude less computer time than DFT. 

We scan ~1.6 million candidate compositions for novel
ternary compounds (AxByCz), 

Predict 4500 new stable materials (would represent a ~10% 
increase in the total number of known ternary compounds).

Complete list of predicted compounds:
http://journals.aps.org/prb/supplemental/10.1103/PhysRevB.89.094104/predictions_dat.pdf

Meredig et al., Phys. Rev. B 89, 094104 (2014).



Validating high-ranking compositions 
with crystal structure prediction

Tested 9 predicted stoichiometries.  In 8 cases, crystal structure prediction 
methods found a structure with DFT energy lower than all combinations of 

existing known phases.



Using this ML model to find 
new energy materials

• ML pointed to novel 
compounds in Ba-As-S system

• Minima Hopping Method 
(structure prediction method), 
to find structures:  Ba4As2S and 
Ba2As2S5

• Discovered entire families of 
these X4Y2Z and X2Y2Z5
compounds 

• Promising solar cell (band gap 
and absorption) and 
thermoelectrics (power factor 
and thermal conductivity) Amsler et al., PRM 3, 035404 (2019)





http://palestrina.northwestern.edu/metal-detection/



Simple Example: Is it a Metal?

Game: palestrina.northwestern.edu/metal-
detection/ 21

Task: Given composition, 𝐸𝐸𝑔𝑔 > 0?
Training Set Dataset: 3000 entries from the 
OQMD

Simple ML Model: Accuracy ~90%



Application to the OQMD

Eg𝚫𝚫𝐇𝐇𝐟𝐟 V
Dataset: 240000 DFT Calculations (OQMD.org)

R: 0.993
MAE: 0.452 Å3/atom

R: 0.924
MAE: 0.21 eV

R: 0.944
MAE: 80.5 meV/atom

Ward, Agrawal, Choudhary, Wolverton,  npj Computational Materials 2, 16028 (2016).



Accuracy of DFT Formation Energies
(comparison with a large number of ~1670 experimentally measured points)

J. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, JOM 65, 1501 (2013).
FERE:  V. Stevanovic, S. Lany, X. Zhang, and A. Zunger, Phys. Rev. B 85, 115104 (2012).
Mixing GGA/GGA+U:  A. Jain et al., Comput. Mater. Sci. 50, 2295 (2011).

∆Hf(σ) = E(σ) – ΣxiEi



Predicting Glass Forming Ability
Application: Metallic Glasses

Goal: Predict glass-forming ability

Dataset: Landolt-Börnstein
– 6836 experimental measurements
– 295 ternary systems
– Binary property: [Can Form Glass] | [Cannot Form]

Model: Random Forest
– 90% accurate in 10-fold cross-validation

Ward, Agrawal, Choudhary, Wolverton,  npj Computational Materials 2, 16028 (2016).



Predicting Glass-Forming Ability

Measured Predicted

Same representation, very different material property

Test: Remove Al-Ni-Zr data from training data, try to predict

X No 
glass
●
Glass

Ward, Agrawal, Choudhary, Wolverton,  npj Computational Materials 2, 16028 (2016).



ML Prediction of New BMG 
Compositions

Search Space:
• 53 Elements
• 27 Million Compositions
• Not “near” any known 

existing BMG

http://oqmd.org/static/analytics/glass_search.html

Ward, Agrawal, Choudhary, Wolverton,  npj Computational Materials 2, 16028 (2016).



Accelerated discovery of metallic glasses 
through iteration of machine learning and high-

throughput experiments

Ren*, Ward*, Williams, Laws, Wolverton, Hattrick-Simpers, Mehta, “Accelerated discovery of metallic glasses 
through iteration of machine learning and high-throughput experiments”, Sci. Advances (2018)

• Discovered a new glass-forming 
ternary system (Co-V-Zr)

• Include processing-dependent 
conditions in ML model

ML (initial)
ML (retrained 

w/ HiTp
Experiments)

HiTp
Experiments



Focus #2: Adding Crystal Structure 
Information to Representation

Our Approach: 
Voronoi-tessellation-based 
attributes

Atomic Characteristics:
1. Element identity
2. Coordination number
3. Bond length
4. Cell size
…

Atomic Characteristics + Descriptive Statistics = 275 Attributes 

L. Ward et al., "Including crystal structure attributes in machine learning models of formation energies via 
Voronoi tessellations", Phys. Rev. B 96, 024104 (2017).



Formation Energy ML Models: 
Comparison of Representations

Composition 
Attributes + 

Voronoi
L. Ward et al., "Including crystal structure attributes in machine learning 
models of formation energies via Voronoi tessellations", Phys. Rev. B 
96, 024104 (2017).



Crystal Graph Convolutional 
Networks (CGCNNs)
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Convolution Function:

Pooling Function:

Xie and Grossman, Phys. Rev. Lett., 2018)



Measuring the performance of 
the model

▪ Predict DFT formation energy, 
▪ Open Quantum Materials Database1

• Training data set: 200,000 entries 
• Testing data set: 20,000 entries 

▪ Benchmark using the 3D CNN & Voronoi tessellation models2

▪ Single validation test is done

1. J. E. Saal et al. JOM 65, 1501 (2013).
2. L. Ward et al. Phys. Rev. B 96, 024104 (2017)

Performance is measured by model prediction accuracy of 
the testing data set
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1. J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, JOM 65, 1501 (2013).

▪ Error of CGCNN (41 meV/atom) is much less than difference between DFT and 
experimental formation energies (~100meV/atom)1

▪ CGCNN model outperforms all other models
▪ CGCNN has less outliers 

Results: Formation energy 
predictions

MAE: 86.2 meV/atom
RMSE: 144.5 meV/atom

MAE: 61.0 meV/atom
RMSE: 107.0 meV/atom

MAE: 48.7 meV/atom
RMSE: 91.2 meV/atom

(a) Voronoi + RF (b) Voronoi + NN (d) CGCNN (c) CNN 

MAE: 41.1 meV/atom
RMSE: 74.5 meV/atom



Improving the CGCNN method

Training on OQMD

Training Set:  200,000 
Compounds

Test Set: 20,000 
Compounds

“Original” 
CGCNN

“Improved” 
iCGCNN



Application: The Prototype 
Search

Common Method: Prototype Search
1. Select a crystal structure
2. Evaluate all possibilities with DFT
3. Select only stable ones

Challenge: Computational cost (success 
rate in finding stable compounds can be 
very low)

Possible Solution: Guide with ML

DFT



High-throughput search for Heusler X2YZ 
precipitate strengtheners in BCC metals

M
or

e 
st

ab
le

> 180,000 DFT calculations of X2YZ Heuslers
(essentially for all possible X, Y, Z)

S. Kirklin, J. E. Saal, V. Hegde and C. Wolverton, “High-Throughput Combinatorial Screening 
of Intermetallic Compounds as Strengthening Precipitates” Acta Mater. (2016).
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Application: Using iCGCNN Deep Learning to 
accelerate discovery of new stable materials

 ThCr2Si2-type materials
• One of the most common prototype structures
• ~1000 examples of stable compounds 

in OQMD with this structure type!

 Using combinatorial search method to discover new materials 

Generating 
new 

compounds
~120,000 new 
compounds 
generated by 
substituting 
elements

Predicting 
stability

CNN predicted 
formation 
energies are 
used to 
calculate hull 
distance

Validation 
using DFT

100 compounds 
with highest 
predicted 
stability are 
cross-checked 
using DFT

iCGCNN model is 200x more likely to discover a stable compound 
than random search (and ~2x more likely than using CGCNN)



Summary
Collect Process Represent Learn

Composition-Based Attributes Crystal Structure Attributes



More information/resources…

• Machine Learning models
– MAGPIE https://bitbucket.org/wolverton/magpie
– B. Meredig et al., "Combinatorial screening for new materials in unconstrained composition 

space with machine learning", Phys. Rev. B 89, 094104 (2014).
– L. Ward et al., "A General-Purpose Machine Learning Framework for Predicting Properties of 

Inorganic Materials" npj Computational Materials 2, 16028 (2016).
– L. Ward, C. Wolverton, "Atomistic calculations and materials informatics: A review", Curr. 

Opin. Solid State Mater. Sci. 21, 167 (2017).
– L. Ward et al., "Including crystal structure attributes in machine learning models of formation 

energies via Voronoi tessellations", Phys. Rev. B 96, 024104 (2017).
– F. Ren, L. Ward, et al., "Accelerated discovery of metallic glasses through iteration of 

machine learning and high-throughput experiments", Science Adv. 4, eaaq1566 (2018).  

https://bitbucket.org/wolverton/magpie
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