Interpretation of EDXRF spectra

Román Padilla Alvarez

International Atomic Energy Agency

Outline:

- EDXRF spectra
 - Characteristic radiation peaks
 - Scatter peaks
 - Escape peaks
 - Continuum
 - Sum peaks
- Spectrum fitting algorithms
 - Least square fit principle
 - Models for peak fit
 - Software for evaluation
- Interferences
 - Spectral interferences
 - Environmental interferences
 - Matrix interferences

Typical EDXRF spectrum contains:

• Escape peaks (Ca-K α – 1.74 keV = 1.95 keV)

- Characteristic radiation
- ✓ K, L or M-lines
- Scatter
 - ✓ Coherent
 - **-** ✓ Incoherent
- Sum peaks

Fe-K α + Fe-K α = 12.8 keV

Continuum radiation

Resolution of ED-XRF spectrometers

Cr - Mn - Fe overlap at ~160 eV

Cr - Mn - Fe overlap at ~20 eV

Our need is:

To "estimate" the net peak area with highest possible

- accuracy (no systematic error)
- precision (smallest random error)

How to do it?

Least-squares estimation (fitting):

- unbiased
- minimum variance

Limiting factors:

- counting statistical fluctuations (precision)
- accuracy of the fitting model

Least squares fit of a straight line

x	У
1	у 4 6
2	6
3	12
4	20
5	19
6	27
7	23
8	31
9	33 44
10	44

Data: $\{x_i, y_i\}$, i=1, 2, ..., N

Model: $y(i) = a_1 + a_2 x_i$

Least squares method: find a_1 and a_2

$$\chi^2 = \sum_i [y_i - y(i)]^2 = \sum_i (y_i - a_1 - a_2 x_i)^2 = \min$$

$$\frac{\partial \chi^2}{\partial a_1} = 0 \Rightarrow \sum_i y_i = Na_1 + a_2 \sum_i x_i$$

$$\frac{\partial \chi^2}{\partial a_2} = 0 \Rightarrow \sum_i x_i y_i = a_1 \sum_i x_i + a_2 \sum_i x_i^2$$

Set of 2 equations in 2 unknowns a_1 and a_2

→ Normal equations

Least squares fit of a peak

Spectrum evaluation principle:

Non-linear least squares method: Search the minimum in χ^2 with an algorithm e.g. Marquardt – Leverberg

Real spectrum:

10 elements

 $=>20 \times (position, width, height) = 60 parameters$

Any search algorithm will fail False minima, physical meaningless solution

Need optimal description of the spectrum => fitting model

$$y(i) = y_{\text{Cont}}(i) + \sum_{j \text{ Elements}} A_j \left[\sum_{k \text{ lines}} R_{jk} P(i, E_{jk}) \right]$$

$$\text{Line ratio} \bullet \text{ Theoretical ratio} \bullet \text{ Corrected for sample self-attenuation}$$

(Linear parameter)

 Initial guess from counts at maximum and theoretical gaussian area

$$y(i) = y_{\text{Cont}}(\underline{i}) + \sum_{j \text{ Elements}} A_j \left[\sum_{k \text{ lines}} R_{jk} P(i, E_{jk}) \right]$$
Continuum function

Different approaches:

- Filtering (iterative averaging of N channels, N ~ FWTM)
- Fitting (linear, polynomial, exponentials)

$$y(i) = y_{\text{Cont}}(\underline{i}) + \sum_{j \text{ Elements}} A_j \left[\sum_{k \text{ lines}} R_{jk} P(i, E_{jk}) \right]$$
Peak shape

Gaussian peak shape
$$P = G(i, E_{jk}) = \frac{Gain}{\sigma_{jk} \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{E(i) - E_{jk}}{\sigma_{jk}} \right)^2 \right]$$

Energy calibration

$$E(i) = Zero + \underline{Gain} \times i$$

(Nonlinear parameters)

Resolution calibration
$$\sigma_{jk} = \left[\left(\frac{Noise}{2\sqrt{2 \ln 2}} \right)^2 + \varepsilon \, \underline{Fano} \, E_{jk} \right]^{1/2}$$

Include provision for

- escape peaks
- sum peaks

Implementation

AXIL = Analysis of X-ray spectra by Iterative Least-squares

- Axil QXAS, DOS version
- WinAxil, WinQXAS Windows version

Spectrum Evaluation by least-squares fitting

Highly flexible method

- Fit individual lines, multiplets, elements...
- Different parametric and non-parametric continuum models
- Include escape and sum peaks

Quality criteria

- Chi-square of fit
- uncertainty estimate of parameters

Statistically correct

• unbiased, minimum variance estimate of the parameters

"Resolving power" is only limited by the noise (counting statistic)

BUT

THE MODEL MUST BE ACCURATE

Deviation from Gaussian peak shape-> systematic errors for minor and trace elements

Improvement of fitting function

$$P(i, E_{jk}) = G(i, E_{jk}) + f_S S(i, E_{jk}) + f_T T(i, E_{jk})$$

Gaussian:

$$G(i, E_{jk}) = \frac{Gain}{S_{jk} \sqrt{2\pi}} Exp \left[-\frac{(E_i - E_{jk})^2}{2S_{jk}^2} \right]$$

$$Step: S(i, E_{jk}) = \frac{Gain}{2E_{jk}} erfc \left[\frac{E(i) - E_{jk}}{\sqrt{2}\sigma} \right]$$

$$Step: S(i, E_{jk}) = \frac{Gain}{2E_{jk}} erfc \left[\frac{E(i) - E_{jk}}{\sqrt{2}\sigma} \right]$$

Step:
$$S(i, E_{jk}) = \frac{Gain}{2E_{jk}} \operatorname{erfc} \left[\frac{E(i) - E_{jk}}{\sqrt{2}\sigma} \right]$$

Tail:
$$T(i, E_{jk}) = \frac{Gain}{2\gamma\sigma \exp\left[-\frac{1}{2\gamma^2}\right]} \exp\left[\frac{E(i) - E_{jk}}{\gamma\sigma}\right] \operatorname{erfc}\left[\frac{E(i) - E_{jk}}{\sqrt{2}\sigma} + \frac{1}{\sqrt{2}\gamma}\right]$$

Determination of step and tail parameters

Lorentzian contribution

Natural line width at high Z elements becomes important

e.g. W K \sim 50 eV 100000 W Kα₁ $W K\alpha_2$ Spectrum 10000 -Fit Continuum 1000 -54 58 60 62 56 Energy, keV

Lorentzian convoluted with Gaussian detector response: Voigt profile

$$\frac{Gain}{\sqrt{2\pi}\sigma} K\left(\frac{E(i) - E_{jk}}{\sqrt{2}\sigma}, \frac{\alpha_L}{2\sqrt{2}\sigma}\right) \text{ with } K(x, y) = \text{Re}\left[e^{-z^2} \operatorname{erfc}(-iz)\right], z = x + iy$$

DOS- AXIL: IAEA, gratis

WinQXAS: IAEA, gratis

WinAXIL: Canberra, ∼ 3000 EUR

bAXIL: BrightSpec, ~ 3000 EUR

Comparison of features

	AXIL-QXAS	WinQXAS	WinAXIL	bAXIL
Environment	DOS	WINDOWS	WINDOWS	Windows
User interface	Old fashion, but friendly	Friendly	Friendly	Friendly
Multiple ROIs	Only successive	Allowed	Not allowed	Not allowed
Scatter peaks	- Integral - As COH INCOH	IntegralAs Line,COH, Line,INCOH	None	Yes, advanced model
Format conversion	Wide	Limited	Limited	Wide selection
Quantitative programs	Multiple choice	Only Elemental Sensitivity	Fundamental Parameter (MET)	Fundamental Parameter (MET) Elem. Sens.

Spectral interferences:

- Spectral interferences are peaks in the spectrum that overlap the spectral peak (region of interest) of the element to be analyzed.
- Examples:
 - o K & L line Overlap
 - S & Mo, Cl & Rh, As & Pb
 - o Adjacent Element Overlap
 - Al & Si, S & Cl, K & Ca...
- □ Resolution of detector determines extent of overlap.

Environmental interferences: Measuring chamber influence

Spurious peaks

- □ Some elements that are present in the chamber or detector materials even at trace concentrations, are efficiently excited by direct or scattered radiation from the source.
- ☐ As these materials are close to the detector, 'spurious peaks' will be present in blank measurements.
- Solution:
 - o Coat inner surfaces with a pure material, which characteristic energies do not interfere, or
 - o Measure blanks of the same matrix, to subtract bakground

