
NEUTRINOS - HOMEWORK PROBLEMS

1. The charged pion decays almost 100% of the time into a muon and a (muon-type) neutrino (π+ →
µ+νµ). In the reference frame where the parent pion is at rest, compute the muon energy as a function
of the muon-mass (mµ), the charged pion mass (mπ), and the neutrino mass (mν). What is the
absolute value of the muon momentum (tri)vector? Numerically, what is the relative change of the
muon momentum between mν = 0 and mν = 0.1 MeV? It is remarkable that the muon momentum
from pion decay at rest has been measured at the 3.4 × 10−6 level (Phys. Rev. D53, 6065 (1996)).
This provides the most stringent current constraint on the “muon-neutrino mass.”

2. At small enough energies (
√
s � 100 GeV), the neutrino scattering cross section with matter is

approximately given by σν ∼ G2
F s/π, where GF is the Fermi constant and s = (p+P )2 is the square of

the center-of-mass energy of the neutrino (with four-momentum pµ) plus target (with four-momentum
Pµ) system. (a) Estimate the cross section, in cm2, for neutrino–electron scattering and neutrino–
neutron charged-current scattering (e.g. νe + n→ e− + p) when e and n are at rest and the neutrino
energy Eν = 10 MeV. (b) Estimate the mean free path of a 10 MeV electron-type neutrino through
lead, in AU (one Astronomical Unit. This is the average Earth–Sun distance, equal to 1.5×1011 m (or
500 light-seconds)). This is a good estimate of the average distance a high-energy solar neutrino will
travel inside lead before converting into an electron. Assume that, at these energies, you can treat the
nucleus as a collection of free nucleons and electrons (this is not completely correct but is not a bad
approximation). Note that, at these energies, the charged-current process νe+p→ e+ +n is forbidden
(or very suppressed) due to the conservation of lepton number.

3. In February 1987, neutrinos from a Supernova that exploded in the Large Magellanic Cloud, located
50 kpc away from the Earth, reached the Kamiokande and the IMB experiments. This neutrino burst
was reported in K. Hirata et al., Phys. Rev. Lett. 58, 1490 (1987) and R.M. Bionda et al., Phys.
Rev. Lett. 58, 1494 (1987). Read the two papers and address the following questions: (a) Both
experiments detect electron antineutrinos via ν̄ep→ e+n. Calculate the incoming antineutrino energy,
in the reference frame where the target protons are at rest, as a function of the recoil angle and energy
of the positron, and the neutron and proton masses. You may set the positron mass to zero. Using the
table of events in the Kamiokande paper, compute the energies of the antineutrinos that were deteced
by the Kamiokande experiment. What is the highest (lowest) observed antineutrino energy? (b) Use
the result from (a) to obtain an upper bound on the “electron antineutrino mass” (don’t worry about
mixing). The reasoning is the following: if neutrinos have mass, neutrinos with different energies
propagate with slightly different velocities. Hence, the higher energy neutrinos should have arrived
at the detectors before the lower energy ones. Compute the relative arrival time of two antineutrinos
with two different energies (assume that the neutrino mass is a lot smaller than any neutrino energy
in the problem). The time distribution of the events observed by Kamiokande is consistent with the
expected antineutrino energy spread (a few seconds). From this fact, place an upper bound on the
neutrino mass. [The last three events arrives more than nine seconds after the first event, and there
is still a debate regarding whether these are really from the Supernova. Discard them, and consider
only the first nine events.] Useful information: 1 parsec is about 3× 1016 m.

4. To understand the effect of neutrino oscillations (consider two flavor νµ ↔ ντ transitions) on the
atmospheric muon-neutrino data, numerically calculate and draw histograms of the average muon
neutrino survival probability in ten equal-size bins of cos θz, where θz is the angle between the neutrino
direction and the vertical-axis at the detector’s location (θz = 0 for neutrinos coming straight from
above, and θz = π for neutrinos coming from below). Make one histogram for Eν = 0.2 GeV, 2 GeV,
and 20 GeV plus ∆m2 = 2.5 × 10−4 eV2, 2.5 × 10−3 eV2, and 2.5 × 10−2 eV2, for a grand total of



nine plots. Assume throughout that the mixing is maximal, i.e., sin2 2θ = 1, and that neutrinos are
produced 20 km above the surface of the Earth.

5. Read the article “Super-Kamiokande Atmospheric Neutrino Results” by T. Toshito, hep-ex/0105023.
It contains an old but not too outdated summary of the atmospheric neutrino data. A talk by T.
Kajita, presented at the Neutrino 1998 Conference, may also prove helpful in understanding some of
the Super-Kamiokande terminology: hep-ex/981001.

(a) From Table 1, compute the value of the “ratio-of-ratios” R (the measured νµ to νe flux ratio
divided by the theoretical calculation) for sub-GeV and multi-GeV single ring events, and compare
them to the numbers quoted in the paper. How do these numbers compare to 1, to each other,
and to the ratio of observed partially contained events to the Monte Carlo calculation (this are all
muon-type events, and consist of events whose average energy is larger than that of the multi-GeV
events)?

(b) Look at Figure 1, and compare with the results you got in problem 1. Can you verify that
∆m2 ∼ 2.5 × 10−3 eV2 and sin2 2θ ∼ 1 is a good fit to the data (200 MeV is characteristic
of sub-GeV events, 2 GeV is typical of multi-GeV events, and 20 GeV is typical of upward
stopping muons. The fourth category, upward-through-going muons, has an average energy above
100 GeV)? In particular, explain why there is almost no depletion for cos θz > 0.2 in the multi-
GeV data, but some depletion in the sub-GeV data.

(c) Use the number of observed sub-GeV “e-like” events (as these seem to agree well with Monte Carlo
predictions) to obtain an order of magnitude estimate of the electron neutrino flux (neutrinos
per unit time and unit area). The cross section for detecting neutrinos at this energy range is
roughly 5 fb.

6. Understanding SNO data – Read Phys. Rev. Lett. 89, 011301 (2002), which describes the first
results of the SNO (Sudbury Neutrino Observatory) experiment [nucl-ex/0204008]. In page 4, the
collaboration quotes the measured values of the “solar neutrino flux,” obtained by using different
physical processes: φCC is determined from the Charged Current reaction ν + d → p + p + e− (d is
a deuteron nucleus), φNC is determined from the Neutral Current reaction ν + d → n + p + ν, while
φES is determined from the Elastic Scattering reaction ν+ e− → ν+ e−. These flux-measurements are
obtained assuming that only electron-type neutrinos are coming from the Sun.

The key point is that the Charged Current process is only sensitive to electron-type neutrinos, the
Neutral Current reaction is flavor blind (i.e. does not care whether the neutrino is of the electron-,
muon- or tau-type), while the Elastic Scattering reaction is sensitive to electron-type neutrinos and
muon/tau-type neutrinos in a different way. At the energy range of interest to the SNO experiment,
the ratio of the elastic scattering cross sections is σES(νa + e)/σES(νe + e) = 0.154, and very close to
being energy independent. Here, a = µ and/or τ .

(a) Rewrite φCC, φNC and φES in terms of φe and φa, the flux of electro-type solar neutrinos and
the flux of muon/tau-type solar neutrinos. Given the experimental results obtained by SNO,
compute φe and φa.

1 Compare your results with those obtained by the collaboration, quoted
in page 5. The fact that φa 6= 0 is, currently, the most concrete evidence we have of neutrino
flavor conversion, since there are no physical processes capable of producing non-electron-type
neutrinos inside the Sun.

1This system is overconstrained – there are three equations and two unknowns. You can either make sure that the three
measurements are consistent, or you can perform a quick fit to the three measurements. If you choose to do this, for simplicity,
add the statistical and systematic errors in quadrature, and assume that this combined error is Gaussian. I recommend the
second option.



(b) Assume that the survival probability of electron-type neutrinos Pee is energy independent, so you
can rewrite φe = Peeφ�, φa = (1 − Pee)φ�, where φ� is the total neutrino flux from the Sun.
From the SNO data, calculate the values of Pee and φ�. Note that Pee < 0.5 is indicative of
“strong” matter effects inside the Sun combined with the fact that the electron-type neutrino is
predominantly light, i.e., sin2 θ < 0.5.

7. Day-Night Effect – Solar neutrino oscillations can also be modified by the fact that, during the night,
the neutrinos have to cross some significant amount of the Earth in order to reach the detectors. Hence,
the oscillation probability is different for neutrinos arriving during the day and the night (experiments
with real-time event reconstruction capabilities search for a day-night asymmetry in the measured
solar neutrino flux).

To understand this effect, assume that solar neutrinos arrive at the surface of the Earth in the |ν2〉
state (a mass eigenstate). This is true of 8B solar neutrinos as long as few×10−9 eV2 < ∆m2 <
few × 10−5 eV2 and sin2 θ is not too small (sin2 θ > 0.1 is safe). Even for the “real” value of ∆m2

12 ∼
8× 10−5 eV2 the approximation is pretty good (at the several percent level).

(a) First, express |ν2〉 as a linear combination of |νe〉 and |νµ〉 (define the mixing angle such that
|νe〉 = cos θ|ν1〉+ sin θ|ν2〉, as we have been doing in class), and compute the probability that |ν2〉
is detected as an electron-type neutrino.

(b) Assume that the solar neutrino, originally in the |ν2〉 state, propagates a distance L through the
Earth before reaching the detector. Assume that the electron number density in the neutrino’s
path is constant. Compute that probability that this neutrino is detected as an electron-type
neutrino.

(c) Assume L = 3000 km,
√

2GFNe = 1.5 × 10−7 eV2/MeV, ∆m2 = 10−5 eV2, sin2 θ = 0.3, and
Eν = 8 MeV, and compute P night

ee − P day
ee .

Useful Formulae: In matter of constant density, the oscillation frequency is

∆M =
√

∆2 sin2 2θ + (∆ cos 2θ −
√

2GFNe)2, (1)

where ∆ ≡ ∆m2/(2Eν). The matter mixing angle obbeys

∆M sin 2θM = ∆ sin 2θ and ∆M cos 2θM = ∆ cos 2θ −
√

2GFNe. (2)

The second expression is easy to derive (try it!) and may help you simplify your answer in (b).

8. It is easy to show that the νµ → νe oscillation probability for three active flavors in vacuum can be
written as

P (νµ → νe) =
3∑

i,j=1

U∗
eiUµiUejU

∗
µj exp

(
−i

(m2
i −m2

j )L

2E

)
. (3)

This form proves useful to address the following questions:

(a) Show that time-reversal invariance is not necessarily conserved, i.e., that P (νµ → νe) 6= P (νe →
νµ) unless U is a real matrix. Show that the different P (νµ → νe)− P (νe → νµ) is proportional
to the imaginary part of U∗

eiUµiUejU
∗
µj .

(b) The mixing matrix for antineutrinos is the same as the one for neutrinos, except for U ↔ U∗.
Show that CP-invariance is not necessarily conserved, i.e., that P (νµ → νe) 6= P (ν̄µ → ν̄e). How
does P (νµ → νe)−P (ν̄µ → ν̄e) relate to the expression for P (νµ → νe)−P (νe → νµ) you worked
out in (a)?

(c) Show that CPT invariance is conserved, i.e., P (νµ → νe) = P (ν̄e → ν̄µ).


