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As discussed inmy lectures, many of the features that the SwamplandDistanceConjecture and (Tower/Sublattice)
Weak Gravity Conjectures tell us are true in general are visible in the simple example of Kaluza-Klein theory,
i.e. the gauge theory we obtain by dimensionally reducing a theory of pure gravity on a circle. In this problem
set you will work out some of the details.

1 Weyl rescaling of a metric

Consider general relativity in D = d + 1 spacetime dimensions. Suppose that we carry out a field redefinition,
defining a new metric

g̃μν(x) = e2ω(x)gμν(x), (1)

for some scalar function ω(x). Check that the following quantities transform in the indicated manner, where
we useR to denote the Ricci scalar:

(a)
√
|g̃ | = eDω(x)

√
|g |.

(b) g̃μν = e−2ω(x)gμν(x).

(c) R̃μν = Rμν − (D − 2)∇μ∇νω − gμνg ρσ∇ρ∇σω + (D − 2)(∇μω)(∇νω) − (D − 2)gμνg ρσ (∇ρω)(∇σω).

(d) R̃ = e−2ω(x)
[
R − 2(D − 1)gμν∇μ∇νω − (D − 2)(D − 1)gμν(∇μω)(∇νω)

]
.

2 Compactifying on a circle and going to Einstein frame

Suppose that we compactify our D-dimensional theory to a theory in d spacetime dimensions, on a spatial
circle. We choose an ansatz for the D-dimensional metric,

ds2D = gμν(x)dx
μdxν + L(x)2dθ2, (2)

where the xμ are d-dimensional coordinates and gμν is a d-dimensional metric, and θ is a dimensionless angular
coordinate for the compact dimension, θ � θ + 2π. Then L(x) has units of length and describes the size of the
compact dimension.

Notice that we have taken both gμν(x) and L(x) to be independent of θ. This is not the most general ansatz.
We have also ignored terms of the form Aμdxμdθ, which will be important below. Our ansatz corresponds
to keeping the “zero modes”—those which are uniform in the extra dimension—for the metric and the scalar
radion field that parametrizes the size of the circle.
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(a) Show that the higher-dimensional Einstein-Hilbert action, for this ansatz, reduces to the d-dimensional
action

SEH =
1

16πGD

∫
ddx
√
−g 2πL(x)Rd , (3)

whereRd is the Ricci scalar associated to the d-dimensional metric gμν(x).

(b) Notice that the field L(x) has no kinetic term, though it does have a kinetic mixing with the graviton
because it appears multiplyingRd ∼ ∂

2h + · · · . Show that we can remove this kinetic mixing by a field
redefinition,

g̃μν(x) =
(
L(x)
〈L〉

)α
gμν(x), (4)

where α is a constant and 〈L〉 is a constant reference value of the radion field—for instance, we might
assume that asymptotically L(x) 7→ 〈L〉 in all directions. After this field redefinition, with an appropriate
choice of α, you should obtain what is referred to as the “Einstein frame” action where the kinetic terms
of gravity and the scalar are independent of each other,

SEinstein =
1

16πGd

∫
ddx

√
−g̃

(
R̃d − Cd g̃μν∂μ(log L)∂ν(log L)

)
. (5)

(You may find that this is only correct up to boundary terms.) What is the value of the exponent α that
we should use when rescaling to achieve this separation of kinetic terms? How are the constantsGd and
Cd related to the parameters of the D-dimensional theory and our ansatz?

3 Scalar coupling to the gauge kinetic term

Now that you have seen how to rescale themetric to eliminate the kineticmixing of the radion and the graviton,
we can just build it into our ansatz to begin with. This time, however, let us consider a more general ansatz
that also includes the “graviphoton”—the spin-1 field that comes from taking metric modes with one leg along
the compact direction, roughly Aμ ∼ gμθ . To be more precise, take the ansatz:

ds2 =
(
L(x)
〈L〉

)−α
g̃μν(x)dxμdxν + L(x)2(dθ + A1)2, (6)

where the 1-form A1 = Aμdxμ will be our d-dimensional gauge field.

(a) Show that, after dimensional reduction, the gauge field in d dimensions has the kinetic term

−

∫
ddx

√
−g̃

1
4e2d

(
L(x)
〈L〉

)−β
g̃μρ g̃νσFμνFρσ , (7)

where F = dA1 = 1
2Fμνdx

μ ∧ dxν is the photon field strength. What are the constants ed and β?

(b) Now define a canonically normalized scalar field φ(x) that is related to L(x), and rewrite the gauge field
kinetic term in terms of φ(x) rather than L(x). You should find that the prefactor depends exponentially
on the canonically normalized field.
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4 Tower of massive particles

So far we have taken all of the terms in our ansatz to be zero modes, independent of the extra-dimensional
coordinate. Now consider instead a more general ansatz that allows the metric modes to depend on the extra
dimension,

ds2 =
(
L(x)
〈L〉

)−α
g̃μν(x, θ)dxμdxν + L(x)2(dθ + A1)2, (8)

and decompose the metric into “Kaluza-Klein modes” with definite momentum around the extra dimension,

g̃μν(x, θ) =
∞∑
n=0

g̃(n)μν (x)einθ . (9)

(a) Argue that the d-dimensional fields g̃(n)μν (x) with different values of n are orthogonal to each other (i.e.,
they have independent kinetic terms).

(b) Argue that the d-dimensional field g̃(n)μν (x) has a mass

mn =
n
〈L〉

, (10)

and that it has charge n under the gauge field A1. Rewritemn in terms of the d-dimensional Planck scale
and the gauge coupling ed . It turns out that these Kaluza-Klein modes each saturate the Weak Gravity
Conjecture inequality relating m2

n with n2e2dM
d−2
d .1

(c) Argue that themassesmn are exponentially small in terms of the canonically normalized radion field. This
is the prediction of the “Swampland Distance Conjecture”: when going a large distance in some scalar
field space, an infinite tower of modes becomes light in a manner that is exponential in the distance.

1We define the Planck scale Md with the convention that 1
8πGd

= Md−2
d , in any dimension d.
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