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Questions on Cosmology and Dark Matter Physics

1. Cosmology review

(a) Assume the universe is either dominated by radiation, matter, or dark energy, with

negligible contributions to the energy density from the other components. In each case,

solve the Friedmann equation to determine the relationship between redshift 1 + z and

elapsed coordinate time t. For each choice, does the expansion of the universe speed

up or slow down with increasing time?

Solution:

Note H(z) = (1/a)da/dt = (1 + z)d/dt(1 + z)−1 = − 1
1+z

dz
dt

.

Radiation domination: H2 = ΩradH
2
0 (1 + z)4 ⇒

(
dz
dt

)2
= H2

0 Ωrad(1 + z)6, i.e. −(1 +

z)−3dz = H0

√
Ωraddt ⇒ (1/2)/(1 + z)2 =

√
Ωradt ⇒ t = 1

H0

1
2(1+z)2

√
Ωrad
⇒ 1 + z =√

1
H0t×2

√
Ωrad

.

Matter domination: H2 = ΩmH
2
0 (1+z)3 ⇒

(
dz
dt

)2
= H2

0 Ωm(1+z)5, i.e. −(1+z)−2.5dz =

H0

√
Ωmdt⇒ (2/3)/(1+ z)1.5 =

√
Ωmt⇒ t = 1

H0

2
3(1+z)3/2

√
Ωm
⇒ 1+ z =

(
1
H0t

2
3
√

Ωm

)2/3

.

Dark energy domination: H2 = ΩΛH
2
0 ⇒

(
dz
dt

)2
= H2

0 ΩΛ(1 + z)2, i.e. −(1 + z)−1dz =

H0

√
ΩΛdt ⇒ C − ln(1 + z) =

√
ΩΛt ⇒ t = (t0H0

√
ΩΛ − ln(1 + z)) 1

H0
√

ΩΛ
⇒ 1 + z =

e−H0
√

ΩΛ(t−t0).

(b) Using the Planck 2018 cosmological parameters, estimate (1) the redshift of matter-

radiation equality, when the contributions to the energy density from matter and radi-

ation are equal, (2) the redshift of matter-dark energy equality, when the contributions

to the energy density from matter and dark energy are equal.

Solution:

Matter-radiation equality: (1 + z)Ωrad = Ωm ⇒ 1 + z = 0.32
10−4 ∼ 3000.

Matter-dark energy equality: (1 + z)3Ωm = ΩΛ ⇒ (1 + z)3 = 0.68
0.32
⇒ 1 + z ≈ 1.28.

(c) Using your results from (a) and (b), estimate the age of the universe at Big Bang

nucleosynthesis (T ∼ 1 MeV), matter-radiation equality, recombination (z ∼ 1000),

and matter-dark energy equality. You may assume the present-day temperature of the
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CMB is 2.725 K (∼ 2 × 10−4 eV), and neglect changes in the number of relativistic

degrees of freedom (although if you wish to include them, that is also fine).

Solution: The first two processes occur during radiation domination (or at its end),

and occur respectively at z ∼ 5× 109 (since temperature redshifts roughly as (1 + z))

and z ∼ 1000. So using our result above for radiation domination, t = 1
H0

1
2(1+z)2

√
Ωrad

,

we obtain for BBN t ≈ 2× 10−18/H0 ≈ 1s, and for recombination t ≈ 6× 10−6/H0 ≈

70, 000 years.

Recombination and matter-DE equality occur during matter domination, so substitut-

ing z = 1000 and z = 1.28 into t = 1
H0

2
3(1+z)3/2

√
Ωm

, we obtain: t = 4 × 10−5/H0 ≈

480, 000 years for recombination, 0.8/H0 ≈ 11 billion years.

(d) Using the Friedmann equation, we can relate H to the energy density of the uni-

verse; during radiation domination, the energy density is controlled by the temperature

of the radiation bath (as well as the number of degrees of freedom). As a consequence,

during radiation domination we can estimate H ∼ T amb
Pl for some coefficients a and

b, where we have neglected numerical prefactors (from e.g. the number of relativistic

degrees of freedom), and mPl is the Planck mass. Determine a and b.

We know that H2 ∼ ρG ∼ T 4/m2
Pl, as mPl ∼ 1/

√
G. Thus H ∼ T 2/mPl, a = 2 and

b = −1.

2. Dark matter interactions and decoupling

Suppose the dark matter possesses a non-gravitational interaction, via a new light U(1)

gauge boson φ (much lighter than the dark matter) which couples both to the dark

matter (with coupling gD) and to electrons (with coupling gV ). At temperatures much

less than the mass of the φ, but much greater than the electron mass, the dark matter

scatters off the thermal bath of relativistic electrons with a scattering cross section of

order,

〈σv〉 ∼ αDαV T
2/m4

φ.

For the momentum of the dark matter to be appreciably changed by repeated such

scatterings (i.e. for the total momentum transfer to be comparable to the initial mo-
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mentum of the dark matter), roughly mDM/T interactions are required. The dark

matter will kinetically decouple from the thermal bath – i.e. the dark matter tempera-

ture will no longer be fixed to the photon temperature – when the expansion timescale

H−1 becomes comparable to the timescale for sizable momentum transfer.

(a) Estimate the temperature of the universe when the dark matter kinetically de-

couples as a function of mφ, αD and αV . Give the numerical value of the decoupling

temperature when the dark matter mass is 1 TeV and αD = 1/30, for the two cases

where (i) αV = 1/30, mφ = mZ , and (ii) αV = 10−6 × 1/30, mφ = 30 MeV (the first

case corresponds to the standard WIMP calculation, the second is an example of dark

matter in a hidden sector with a light force carrier). You may neglect O(1) factors

in your calculation, and you may assume kinetic decoupling occurs during radiation

domination and while the electrons and positrons are relativistic.

(Note that this calculation only holds when T & me, which implies radiation domina-

tion – once the electrons become non-relativistic, unless the dark matter has a large

coupling to the neutrinos, the rate becomes very small due to a lack of targets and

decoupling is usually immediate.)

Solution:

We require 〈σv〉T 3T/mDM ∼ H ⇒ αDαV T
6/(mDMm4

φ) ∼ T 2/mPl, from above. Thus

we obtain T ∼
(

m4
φmDM

mPlαDαV

)1/4

. Substituting in the numbers for the two cases gives:

(i) 50 MeV

(ii) 500 keV

(Note in both cases we have taken mPl ∼ 1019 GeV, slightly different answers may be

obtained depending on choices of O(1) factors.)

We see that in the second case, the DM would stay coupled right down to the electron

decoupling scale, where this calculation breaks down. However this typically requires

quite a light DM mass.

(b) The horizon size cH−1 at kinetic decoupling roughly sets the scale of the smallest

dark matter structures. Matter fluctuations that enter the horizon at earlier times are

suppressed by the coupling of the dark matter to the thermal bath. As we discussed
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today, the presence of small-scale structure can be probed by measurements of the

Lyman-α forest, and such structures can also be erased by a high free-streaming length

for the dark matter.

Dark matter structures too small to probe directly (e.g. with the Lyman-α obser-

vations) can be very important in searches for dark matter annihilation (where dark

matter particles collide and produce visible particles), for example in studies of the

extragalactic gamma-ray background where most of the predicted power comes from

annihilations occurring in large numbers of very small dark matter halos. As you will

see, unfortunately, this small-scale cutoff is very model-dependent.

For kinetic decoupling temperatures of 1 MeV and 1 GeV, compute Mcutoff as the dark

matter mass enclosed inside the horizon at the time of decoupling. (It is a little more

complicated than this, as there are competing damping scales - see arXiv::0903.0189

for a discussion.) You may assume a spatially flat universe, and the Planck measure-

ment of the dark matter density.

Solution: These temperatures are during radiation domination, so we can esti-

mate H ∼ T 2/mPl. The enclosed mass is ρDM(4π/3)H−3 ∼ ρDM,today(T/T0)3H−3 ∼

ρDM,today(mPl/(TT0))3. The DM density today is ρDM,today ≈ 10−6 GeV/cm3. Thus

for temperatures of 1 MeV and 1 GeV we obtain enclosed masses of ∼ 1057 GeV and

∼ 1048 GeV respectively, or ∼ 1 solar mass and ∼ 10−9 solar masses.

(c) The presence of the light force carrier also mediates a scattering interaction between

dark matter particles, which could become important in the dense cores of dark matter

halos at late times. Consider a galaxy cluster with typical DM velocity dispersion

∼ 1000 km/s. At the virial radius where the dark matter density is roughly 200 times

the cosmological value, what must the DM-DM scattering cross section σ be such that

the scattering time for a DM particle is less than 1010 years? (Your answer will depend

on the DM mass.)

Solution: The scattering rate (inverse of time) is nσv = ρvσ/mDM. Thus we must

have σ/mDM & 1
1010years×ρv ; taking ρ = 200 × 10−6 GeV/cm3 and v = 1000 km/s, we

obtain σ/mDM & 80 cm2/g.

(d) For a 100 GeV WIMP, compare this cross section to the DM-baryon cross section
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constrained by XENON1T, which can be as small as σ ≈ 4 × 10−47 cm2 for 30 GeV

DM. If we take this cross section to be given parametrically by ∼ 1/m2, what is the

characteristic mass scale m (keeping the DM mass at 100 GeV)?

Solution: This cross section corresponds to σ/mDM & 10−22 cm2/GeV, so for 100 GeV

DM, this would correspond to σ & 10−20 cm2. This is a completely enormous cross

section by direct-detection standards! We can also express this as σ & 1/(10−4GeV )2,

i.e. the relevant mass scale is 100 keV. Cross sections of this size typically require a

very light mediator.


