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Questions on Dark Matter Production and Direct Detection

1. Asymmetric dark matter

Suppose that the dark matter is a Dirac fermion, and there is an asymmetry in the dark

matter sector analogous to that in the baryon sector, so the abundance of dark matter

and anti-dark-matter is different. In this case, either the depletion of the less abundant

component (as for the baryons) or the expansion of the universe (as for conventional

WIMP dark matter, as we have discussed in lectures) can cut off the annihilation

processes that deplete the dark matter density. This idea has gained considerable

interest over the last few years, in part because of the apparent coincidence between

the amounts of dark and baryonic matter in the universe – if their abundances are set

by entirely different processes, why are they only different by a factor of five or so?

In this problem we will work out the freeze-out of annihilations for this scenario.

(a) Let us denote the DM by χ+ and the anti-DM by χ−. Without loss of generality,

we will assume χ+ is more abundant than χ−. Let the average χ+χ− annihilation

cross section be given by 〈σv〉. Justify (qualitatively, in words) the coupled Boltzmann

equations for this system:

dn±

dt
+ 3Hn± = −〈σv〉(n+n− − n+

eqn
−
eq).

Here n describes the number density of the two species and the subscript “eq” refers

to an equilibrium value. (We are assuming here that the annihilation reaction is the

only number-changing reaction for either DM or anti-DM.)

(b) Let us define Y ± = n±/s, where s is the entropy density of the universe. You may

assume that entropy is conserved, so s ∝ a−3. Let η = Y + − Y −. Show that η is

conserved by the Boltzmann equations from (a), and explain the physical reason for

this behavior.

(c) Define the fractional asymmetry r = n−/n+. Note by definition 0 ≤ r ≤ 1. What is

the annihilation rate in terms of the overall DM density n = n+ +n− and r? Comment

on the limits r = 1 and r = 0.
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(d) Assume the universe is radiation dominated so H(T ) ∝ T 2 and T ∝ 1/a; you may

assume no significant change in g∗ over the time period of greatest interest. Define

req = n−eq/n
+
eq, and x = m/T . Show that the Boltzmann equations yield a dynamical

equation for r of the form:

dr

dx
∝ −η〈σv〉x−2

[
r − req

(
1− r

1− req

)2
]
∝ −η〈σv〉x−2

[
r −

Y +
eqY

−
eq

η2
(
1− r2

)2]
.

(e) As the DM freezes out, the Yeq terms in the above equation will be exponentially

suppressed (by the usual Boltzmann suppression). In the limit where this term ap-

proaches zero, solve the resulting differential equation for the late-time value of r. How

does it depend on the annihilation cross section? Comment.

2. Astrophysics-independent comparisons in direct detection

As mentioned in lecture, the usual calculation for direct detection makes several as-

sumptions about the relevant particle physics, nuclear physics and astrophysics. In

this problem, we will look at one way to factor out the unknown astrophysics, given

certain assumptions on the particle physics model.

For elastic scattering, we will write the differential rate with respect to recoil energy

in the form:
dR

dER
=
NTMTρ

2mχµ2
σ(ER)

∫ ∞
vmin

dv
f(v, t)

v
. (1)

For the purposes of this problem, ignore both the motion of the Sun and the motion

of the Earth around the Sun, and assume the DM velocity distribution in the Galactic

frame is isotropic.

(a) Suppose a candidate WIMP event is detected in a silicon detector with recoil energy

12.3 keV (you may round all atomic masses to the nearest integer), and interpreted as

the scattering of a 10 GeV WIMP. What is the smallest possible speed of the WIMP

in question, in the lab frame?

(b) Suppose the scattering occurs at that minimum velocity. What is the maximum

recoil energy of an identical WIMP (with the same velocity) scattering in a detector

with target material: (i) Xenon, (ii) Sodium, (iii) Iodine, (iv) Germanium.
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(c) Suppose a differential rate dR/dER = K(ER) is measured at one experiment, with

target mass M1
T , target number N1

T and cross section σ1(ER). By writing
∫∞
vmin

dv f(v,t)
v

in terms of K(ER), one can immediately predict the differential rate at a different

experiment at the energy corresponding to the same vmin. Use this idea to write down

the predicted differential rate as a function of recoil energy at an experiment with target

mass M2
T , target number N2

T and cross section σ2(ER), eliminating all dependence on

the function f(v).

This approach has been used to perform “astrophysics-independent” comparisons be-

tween possible signals (and constraints) at different experiments, although it does rely

on knowing the kinematics of the interaction.


