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Questions on Dark Matter Production and Direct Detection

1. Asymmetric dark matter

Suppose that the dark matter is a Dirac fermion, and there is an asymmetry in the dark

matter sector analogous to that in the baryon sector, so the abundance of dark matter

and anti-dark-matter is different. In this case, either the depletion of the less abundant

component (as for the baryons) or the expansion of the universe (as for conventional

WIMP dark matter, as we have discussed in lectures) can cut off the annihilation

processes that deplete the dark matter density. This idea has gained considerable

interest over the last few years, in part because of the apparent coincidence between

the amounts of dark and baryonic matter in the universe – if their abundances are set

by entirely different processes, why are they only different by a factor of five or so?

In this problem we will work out the freeze-out of annihilations for this scenario.

(a) Let us denote the DM by χ+ and the anti-DM by χ−. Without loss of generality,

we will assume χ+ is more abundant than χ−. Let the average χ+χ− annihilation

cross section be given by 〈σv〉. Justify (qualitatively, in words) the coupled Boltzmann

equations for this system:

dn±

dt
+ 3Hn± = −〈σv〉(n+n− − n+

eqn
−
eq).

Here n describes the number density of the two species and the subscript “eq” refers

to an equilibrium value. (We are assuming here that the annihilation reaction is the

only number-changing reaction for either DM or anti-DM.)

Solution: When 〈σv〉 → 0, the abundance of the DM should redshift as a−3, i.e.

d(n±a
3)/dt = 0; this is captured by the terms on the LHS of the equation. Once

〈σv〉 is turned on, we need to take into account the DM depletion via annihilation,

and production via the reverse process. The rate of annihilations is n+n−〈σv〉, as each

annihilation requires both a + and - particle; each annihilation removes a single χ+ and

a single χ−, so there is no numerical prefactor. The production term cannot depend on

the DM abundances, only on the temperature of the SM bath, and must approximately

cancel the depletion term in the limit of large 〈σv〉, when the DM abundances must
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also approach equilibrium. This tells us that the production term is 〈σv〉n+
eqn
−
eq, as

given above.

(b) Let us define Y ± = n±/s, where s is the entropy density of the universe. You may

assume that entropy is conserved, so s ∝ a−3. Let η = Y + − Y −. Show that η is

conserved by the Boltzmann equations from (a), and explain the physical reason for

this behavior.

Solution: The LHS of the equation can be rewritten as a−3 d
dt

(n±a3) = s d
dt

(n±/s).

Thus we obtain:

s
dY ±

dt
= −s2〈σv〉(Y +Y − − Y +

eqY
−
eq ).

Taking the difference of the equations for Y + and Y −, we obtain:

dη

dt
= −s〈σv〉(Y +Y − − Y +

eqY
−
eq ) + s〈σv〉(Y +Y − − Y +

eqY
−
eq ) = 0.

Physically, this occurs because Y ± is proportional to the total number of DM particles

in a comoving volume (since s scales with the inverse of the physical size of a comoving

volume), the expansion of the universe does not change the number of particles in a

comoving volume, and the annihilation interactions deplete the total number of χ+ and

χ− particles equally, so the difference in particle number within a comoving volume

remains constant.

(c) Define the fractional asymmetry r = n−/n+. Note by definition 0 ≤ r ≤ 1. What is

the annihilation rate in terms of the overall DM density n = n+ +n− and r? Comment

on the limits r = 1 and r = 0.

Solution: We can write the total density n = n+(1 + r), and consequently n+ =

n/(1 + r), n− = nr/(1 + r). The annihilation rate n+n−〈σv〉 = n2r/(1 + r)2. In the

limit of r = 0 the annihilation rate approaches zero, as expected (we need some χ−

component for annihilations to occur), whereas in the limit of r = 1 the annihilation

rate approaches n2/4, a factor of 2 smaller than in the case of identical initial particles.

This factor of 2 occurs because in the symmetric limit, only 1/2 the DM particles can

annihilate with any given DM particle (i.e. only the χ− can annihilate with any given

χ+, and vice versa).
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(d) Assume the universe is radiation dominated so H(T ) ∝ T 2 and T ∝ 1/a; you may

assume no significant change in g∗ over the time period of greatest interest. Define

req = n−eq/n
+
eq, and x = m/T . Show that the Boltzmann equations yield a dynamical

equation for r of the form:

dr

dx
∝ −η〈σv〉x−2

[
r − req

(
1− r

1− req

)2
]
∝ −η〈σv〉x−2

[
r −

Y +
eqY

−
eq

η2
(1− r)2

]
.

Solution: Let us start from the equation in the solution to part (b) above:

dY ±

dt
= −s〈σv〉(Y +Y − − Y +

eqY
−
eq ).

Note we can write d
dt

= 1
a
da
dt

d
d ln a

= H(T ) d
d ln(1/T )

= H(T ) d
d lnx

, via the assumptions

above. Thus we can write:

H(T )x
dY ±

dx
= −s〈σv〉(Y +Y − − Y +

eqY
−
eq ).

Now we have:

dr

dx
=

d

dx

(
Y −

Y +

)
=

1

Y +

(
dY −

dx
− Y −

Y +

dY +

dx

)
=

1

Y +H(T )x

(
−s〈σv〉(Y +Y − − Y +

eqY
−
eq )
)

(1−r)

Since η = Y +−Y −, we can write η = (1− r)Y +, so Y + = η/(1− r), Y − = ηr/(1− r).

Thus we obtain:

dr

dx
=
−s〈σv〉(1− r)2

ηH(T )x

(
η2r/(1− r)2 − Y +

eqY
−
eq

)
=
−s〈σv〉η
H(T )x

(
r − (1− r)2Y +

eqY
−
eq/η

2
)

The s/H(T ) factor is ∝ T 3/(T 2/mPl) ∝ TmPl ∝ 1/x. Using Y +
eq = η/(1 − req),

Y −eq = ηr/(1− req), we can rewrite the equation in the two required forms:

dr

dx
∝ −〈σv〉η

x2
(
r − (1− r)2Y +

eqY
−
eq/η

2
)

=
−〈σv〉η
x2

(
r − (1− r)2

(1− req)2
req

)
(e) As the DM freezes out, the Yeq terms in the above equation will be exponentially

suppressed (by the usual Boltzmann suppression). In the limit where this term ap-

proaches zero, solve the resulting differential equation for the late-time value of r. How

does it depend on the annihilation cross section? Comment.
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Solution: Dropping the equilibrium terms, we obtain:

dr

dx
=
−A〈σv〉r

x2
,

where A is a (positive) constant. Solving this differential equation gives:∫
1

r
dr = −A〈σv〉

∫
1

x2
dx⇒ ln r = C + A〈σv〉/x,

where C is a constant of integration, i.e. r = eCeA〈σv〉/x. If xf denotes the value of x

at which the abundances start to significantly diverge from their equilibrium values,

then r(xf ) ≈ 1 (assuming equal masses and degrees of freedom for the χ+ and χ−

components). Thus we have r ≈ eA〈σv〉(1/x−1/xf ). Thus as x→∞, the ratio r converges

to a constant value given approximately by e−A〈σv〉/xf . The late-time overall abundance

is given by Y ++Y − = η(1+r)/(1−r), so if r becomes exponentially small, Y ++Y − ≈

η, which is fixed throughout the freezeout process and is totally determined by the

primordial asymmetry. The residual relic abundance of the subdominant component –

and the late-time annihilation rate – is thus exponentially sensitive to the annihilation

cross section.

This exponential dependence contrasts with the standard symmetric freezeout scenario

(corresponding to A = 0, as A ∝ η) where the relic density of both components is

inversely proportional to the annihilation cross section. The key difference is that in the

case of symmetric freezeout, both the species undergoing depletion and its annihilation

partner are simultaneously being exponentially depleted, leading to a rapid cutoff in

the annihilation rate. In the asymmetric case, the subdominant species is annihilating

against a partner whose abundance is not exponentially depleted (being fixed by η at

late times), and thus its annihilations remain much more efficient.

2. Astrophysics-independent comparisons in direct detection

As mentioned in lecture, the usual calculation for direct detection makes several as-

sumptions about the relevant particle physics, nuclear physics and astrophysics. In

this problem, we will look at one way to factor out the unknown astrophysics, given

certain assumptions on the particle physics model.
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For elastic scattering, we will write the differential rate with respect to recoil energy

in the form:
dR

dER
=
NTMTρ

2mχµ2
σ(ER)

∫ ∞
vmin

dv
f(v, t)

v
. (1)

For the purposes of this problem, ignore both the motion of the Sun and the motion

of the Earth around the Sun, and assume the DM velocity distribution in the Galactic

frame is isotropic.

(a) Suppose a candidate WIMP event is detected in a silicon detector with recoil energy

12.3 keV (you may round all atomic masses to the nearest integer), and interpreted as

the scattering of a 10 GeV WIMP. What is the smallest possible speed of the WIMP

in question, in the lab frame?

Solution: The minimum relative velocity of the two particles, as derived in lectures,

is vmin =
√
mTER/2µ2. The atomic mass of silicon is 28 (to the nearest integer). One

atomic mass unit corresponds to 0.93 GeV, for a total mass of 26.0 GeV. The reduced

mass is thus 26 × 10/(26 + 10) ≈ 7.2 GeV. This gives a minimum relative velocity of

vmin = 1.8× 10−3c = 530 km/s, which is also the lab-frame speed of the WIMP (since

in that frame the target is at rest).

(b) Suppose the scattering occurs at that minimum velocity. What is the maximum

recoil energy of an identical WIMP (with the same velocity) scattering in a detector

with target material: (i) Xenon, (ii) Sodium, (iii) Iodine, (iv) Germanium.

Solution: The atomic masses of the relevant species are 131 (xenon), 23 (sodium),

127 (iodine), and 73 (germanium). Taking (ER)max = 2µ2v2rel/mT , we obtain the recoil

energies (i) 4.3 keV (ii) 13.3 keV (iii) 4.4 keV (iv) 6.9 keV.

(c) Suppose a differential rate dR/dER = K(ER) is measured at one experiment, with

target mass M1
T , target number N1

T and cross section σ1(ER). By writing
∫∞
vmin

dv f(v,t)
v

in terms of K(ER), one can immediately predict the differential rate at a different

experiment at the energy corresponding to the same vmin. Use this idea to write down

the predicted differential rate as a function of recoil energy at an experiment with target

mass M2
T , target number N2

T and cross section σ2(ER), eliminating all dependence on

the function f(v).
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This approach has been used to perform “astrophysics-independent” comparisons be-

tween possible signals (and constraints) at different experiments, although it does rely

on knowing the kinematics of the interaction.

Solution: A recoil energy of ER at experiment 2 corresponds to a vmin of√
m2
TER/2(µ2)2, where µ2 is the reduced mass for a target of mass M2

T . In turn, at

experiment 1 this is the vmin for a recoil energy of E ′R = 2µ2
1v

2
min/m

1
T = ER

m2
T

m1
T

(µ1/µ2)
2,

where µ1 is the reduced mass calculated for a target of mass M1
T .

Now for this same fixed vmin (corresponding to a recoil energy of ER at experiment 2,

and E ′R at experiment 1), we can write:

K(E ′R) =
N1
TM

1
Tρ

2mχµ2
1

σ(E ′R)

∫ ∞
vmin

dvf(v, t)/v,

and the desired rate at experiment 2 is given by:

dR

dER
=
N2
TM

2
Tρ

2mχµ2
2

σ(ER)

∫ ∞
vmin

dvf(v, t)/v

=
N2
TM

2
Tρ

2mχµ2
2

σ(ER)

σ(E ′R)
K(E ′R)

2mχµ
2
1

N1
TM

1
Tρ

=
N2
TM

2
Tµ

2
1

N1
TM

1
Tµ

2
2

σ(ER)

σ(E ′R)
K(E ′R), (2)

or writing out the dependences of E ′R explicitly,

dR

dER
=
N2
TM

2
Tµ

2
1

N1
TM

1
Tµ

2
2

σ(ER)

σ
(
ER

m2
T

m1
T

(µ1/µ2)
2
)K (ERm2

T

m1
T

(µ1/µ2)
2

)
.


