Fluid Mechanics: Worksheet 1

June 2019

Set up

- 1. Download Pplane8.m for your computer from: https://www.mathworks.com/matlabcentral/fileexchange/61636-pplane
- 2. Run it!

Exercises

We consider the Lotka-Volterra, predator-prey model

$$\begin{cases} \dot{x} = ax - bxy - cx^2 \\ \dot{y} = dy + exy - jy^2. \end{cases}$$
 (1)

For the following set of parameters

- a=2, b=2, c=0, d=-1, e=1, j=0
- a=2, b=2, c=1, d=-1, e=1, j=0
- a=2, b=2, c=1, d=-1, e=2, j=0
- a=2, b=2, c=0, d=-1, e=1, j=1
- a=1, b=8, c=1, d=-1, e=4, j=0

perform the following actions:

1. Identify the steady state of the system. That is to say find all the possible solutions to

$$\begin{cases} 0 = ax - bxy - cx^2 \\ 0 = dxy - ey + jy^2. \end{cases}$$
 (2)

2. Linearize the system around each steady state: Given a steady state (x_0, y_0) find

$$A_0 = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix},$$

such that (??) behaves like

$$\begin{cases} \dot{\tilde{x}} = a_{1,1}\tilde{x} + a_{1,2}\tilde{y} \\ \dot{\tilde{y}} = a_{1,2}\tilde{x} + a_{2,2}\tilde{y}. \end{cases}$$
 (3)

where $\tilde{x} = x - x_0$ and $\tilde{y} = y - y_0$.

Compute the eigenvalues of the matrix A_0 :

Step 1. Input the matrix A_0 into matlab:

First initialize:

$$A0 = zeros[2, 2]$$

Then, input:

$$A0[1,1] = a_{1,1}$$

 $A0[1,2] = a_{1,2}$

$$A0[2,1] = a_{2,1}$$

$$A0[2,2] = a_{2,2}$$

Step 2. Calculate the eigenvalues:

$$eig(A_0)$$

Are they positive, negative, complex? What type of equilibria is (x_0, y_0) .

- 3. Using pplane plot the phase diagrams.
- 4. Use pplane solutions tab to find the steady states of the system. Do they coincide with the ones you calculated?
- 5. Use the solutions tab to plot a trajectory close to the steady state. What is the relationship between the eigenvalues of A_0 and the behavior of the trajectories?
- 6. Use pplane to find the nullclines.
- 7. Use the solutions tab and plot trajectories with initial conditions on each side of the nullclines.
- 8. Is any of the species doomed for extinction? Is there initial conditions in which both species become extinct?