The Ultrafast Einstein-de Haas effect

Steve Johnson

Dornes et al., Nature 565, 209 (2019)

How does this happen dynamically?

Assume provisionally:
(1) M changes "arbitrarily" fast, spatially uniform
(2) dM change in a volume dV \rightarrow local torque

$$
\sigma_{M}=\left(\begin{array}{ccc}
0 & \tau_{3} & -\tau_{2} \\
-\tau_{3} & 0 & \tau_{1} \\
\tau_{2} & -\tau_{1} & 0
\end{array}\right)
$$

How does this happen dynamically?

Assume provisionally:
(1) M changes "arbitrarily" fast, spatially uniform
(2) dM change in a volume dV \rightarrow local torque

$$
\vec{f}=\nabla \cdot \sigma_{M}
$$

\Rightarrow force density non-zero only at surfaces!!

Transverse displacement wave

-
-
-
-
-

---五

\square

-

.

0

Assume provisionally:
(1) M changes "arbitrarily" fast, spatially uniform
(2) dM change in a volume $d V \rightarrow$ local torque

Einstein-de Haas effect in a NiFe film deposited on a microcantilever

T. M. Wallis, ${ }^{\text {a }}$ J. Moreland, and P. Kabos

National Institute of Standards and Technology, Boulder, Colorado 80305
(Received 31 May 2006; accepted 27 July 2006; published online 18 September 2006)
A method is presented for determining the magnetomechanical ratio g^{\prime} in a thin ferromagnetic film deposited on a microcantilever via measurement of the Einstein-de Haas effect. An alternating magnetic field applied in the plane of the cantilever and perpendicular to its length induces bending oscillations of the cantilever that are measured with a fiber optic interferometer. Measurement of g^{\prime} provides complementary information about the g factor in ferromagnetic films that is not directly available from other characterization techniques. For a $50 \mathrm{~nm} \mathrm{Ni} \mathrm{i}_{80} \mathrm{Fe}_{20}$ film deposited on a silicon nitride cantilever, g^{\prime} is measured to be 1.83 ± 0.10.
[DOI: 10.1063/1.2355445]

PHYSICAL REVIEW B 79, 104410 (2009)

Dynamics of the Einstein-de Haas effect: Application to a magnetic cantilever
Reem Jaafar, E. M. Chudnovsky, and D. A. Garanin
Department of Physics, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589, USA
(Received 17 November 2008; revised manuscript received 26 January 2009; published 11 March 2009)

$\mathrm{dM} / \mathrm{dt}$ limited by domain
wall motion
~ 20 kHz
...assumption (1) violated!

Ultrafast Demagnetization

Ultrafast Spin Dynamics in Ferromagnetic Nickel
E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot

Institut de Physique et Chimie des Matériaux de Strasbourg, Unité Mixte 380046 CNRS-ULP-EHICS,
23, rue du Loess, 67037 Strasbourg Cedex, France
(Received 17 October 1995)

- Intense fs laser excitation of $\mathrm{Ni} \rightarrow$ fast drop in magnetization
- Subsequently seen in Fe, Co, alloys

- Significant drop in M over ~ 10-30 fs
- Where does the angular momentum go?
- Orbitals?
e.g. Stamm et al. Nature Mater. 6, 740 (2007);

Hennecke et al. PRL 122, 157202 (2019)

- EM field? Koopmans et al. J. Phys. Cond. Mat. 15, S723 (2003)
- Elsewhere in space, but still in spins? Battiato et al.
- Lattice / phonons?

Coupling of magnetism to lattice: ultrafast Einstein-de Haas effect

- Fast demagnetization \rightarrow in-plane force on all surfaces with a normal not parallel to $\Delta \mathrm{M}$ ($\mathrm{f} \propto \mathrm{n} \times \mathrm{dM} / \mathrm{dt}$)
- Leads to a transverse strain wave from surface
- Sign of force/displacement depends on sign of M

Thin film sample

Simulated transverse strain dynamics

Simulated atomic displacements (atomistic model, Born-von Karman)

peak strain $\sim 1.2 \times 10-4$
(assumes all lost angular momentum goes to lattice)
... a tiny change!!
compare to longitudinal strain from heating, up to ~ 1×10^{-2}

Coupling of magnetism to lattice: ultrafast Einstein-de Haas effect

- Can see transverse strain by x-ray diffraction
- Look at a crystal truncation rod (CTR) of an inplane reflection
- Position along CTR selects momentum
- Coherent strain gives oscillating intensity contribution, sign depends on sign of M

Measurement of truncation rod

Dornes et al., Nature 565, 209 (2019)

(220) truncation rod

- Pump-probe for time resolution
- Pulser + electromagnet sets +/- M
- Sort data by polarity
- $\mathrm{M}^{+}+\mathrm{M}$: "even" effects (heat, magnetostriction)

- M^{+}- M : " :odd" effects (EdH transverse strain)

Experiment
Simulation

$\mathrm{M}^{+}+\mathrm{M}^{-}$
(even)
:---
$\mathrm{q}_{\mathrm{z}}=0.0482$
$\mathrm{q}_{\mathrm{z}}=0.0236$

Dornes et al., Nature 565, 209 (2019)

Dispersion

- Consistency check: "odd" M oscillations vs. q agree with transverse sound velocity ($3875 \pm 20 \mathrm{~m} / \mathrm{s}$)

Quantitative analysis

- Best fit of simulation to data consistent with 200 fs time scale of torque, 80% of lost angular momentum
- Large uncertainties, could easily be any time scale below 300 fs and as much as 100\%
- Limited mostly by S / N at high wavevectors

Mechanisms: Local vs. superdiffusion

- Is angular momentum transferred to lattice on fast time scales? YES!
- Appears as a coherent strain wave in < 0.3 ps
- Outstanding question: how does it get there?
- Via incoherent phonons?
- More direct path?
- Needs better time \& q resolution

Theory...

- Some theories predict a fast (~ 10 fs) transfer via spinorbit coupling / non-perpturbative coupling to phonons

| PRL 115, 217204 (2015) PHYSICAL | REVIEW | LETTERS |
| :--- | :--- | :--- | | week ending |
| :---: |
| 20 NOVEMBER 2015 |

Many-Body Theory of Ultrafast Demagnetization and Angular Momentum Transfer

 in Ferromagnetic Transition MetalsW. Töws and G. M. Pastor

Institut für Theoretische Physik, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
(Received 12 June 2015; published 20 November 2015)

PHYSICAL REVIEW B 99, 064428 (2019)

Quantum many-body dynamics of the Einstein-de Haas effect
J. H. Mentink ${ }^{*}$ and M. I. Katsnelson

Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
M. Lemeshko

Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria

Outlook

[Stanciu et al. PRL 99, 047601 (2007) \& PRL 99, 217204 (2007)]
GdFeCo alloys

- All optical switching of magnetism in ferrimagnets
- Demagnetization is an intermediate: role/constraints from Einstein-de Haas coupling?

Conclusions

- Experimental evidence for a coupling of dM/dt to antisymmetric stress in response to strong electronic excitation
- Not magnetostriction (odd in M , depends on dM/dt not M)
- Makes transverse strain wave propagating from interfaces
- May play a role in ultrafast switching of ferrimagnets

Acknowledgments

FNSNF

Swiss National Science Foundation

PAUL SCHERRER INSTITUT

PSI
A. Alberca
B. P. Beaud
M. Buzzi*
E. Bothschafter
H. Lemke
M. Porer
L. Rettig*
U. Staub
C. Vaz
Y. W. Windsor

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

