
Quantum thermoelectricity - a few exercises

1. Show that the Onsager reciprocal relation Π = TS between Peltier coefficient Π
and Seebeck coefficient S (T is the temperature) is valid, for a two-terminal system
described by Landauer scattering theory, also when a generic magnetic field B is
applied, that is, Π(B) = TS(B) (which is different from the Onsager-Casimir
relation Π(B) = TS(−B)).

2. Given a scatterer connected to two reservoirs (L,R), in the steady-state the entropy
of the scatterer does not change in time, while the rate of change of entropy in the
reservoirs is Ṡi = −Jh,i/Ti, with i = L,R, and Jh,i heat current out of reservoir i
(at temperature Ti) into the scatterer. Show that, within linear response, the total
entropy production reduces to Ṡ = FeJe +FhJh. Here Jh and Je are the heat and
electric currents, while the thermodynamic forces are Fe = ∆V/T (where ∆V is
the applied voltage) and Fh = ∆T/T 2 (∆T ≡ TL − TR). Discuss generalization of
this problem to N reservoirs.

3. Compute the transmission probabilities Tij (i, j = 1, 2, 3) for a system made of two
dots in series, each with a single energy level, described by the Hamiltonian:

H =

[
EL −t
−t ER

]
. (1)

In the wide-band approximation the self-energies may be written as

Σ1 =

[
−iγ1

2
0

0 0

]
, Σ3 =

[
0 0
0 −iγ3

2

]
,

Σ2 =

[
−iγ2

2
0

0 −iγ2
2

]
. (2)

Suggestion: use the Fisher-Lee formula:

Tij = Tr
[
ΓiGΓj G

†] , (3)

where the broadening matrices Γi = i(Σi−Σ†
i ) and G the retarded Green’s function

of the system.
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4. Find the optimal transmission function which maximizes the thermoelectric figure
of merit ZT in the case when thermal conductivity is dominated by phonons.
Suggestion: consider the transmission function as an infinite set of slices each of
width δ → 0, where we define τγ as the transmission of slice γ, which sits at energy
Eγ.

5. Consider a quantum dot coupled to left (L) and right (R) reservoirs. The simplest
case is that in which we neglect spin and assume the charging energy for double-
occupancy, U , is much bigger than all other energy scales (temperatures, biases,
etc.). Then we only have two system states 0 (dot-level empty) and 1 (dot-level
singly occupied), with energies E0 = 0 and E1 = ε1, respectively. Then, the rate
equation for the dot’s dynamics is

d

dt

(
P0(t)
P1(t)

)
=

(
−Γ10 Γ01

Γ10 −Γ01

) (
P0(t)
P1(t)

)
, (4)

where Γba = Γ
(L)
ba + Γ

(R)
ba . Here Pi(t) is the probability to find the dot in state i at

time t. Moreover, the rates obey the local detailed balance condition

Γ
(i)
ab = Γ

(i)
ba exp

[
−∆S (i)

ba

/
kB

]
, (5)

where ∆S (i)
ba is the change in entropy in reservoir i when it induces a system

transition from a to b. This entropy change is given by the Clausius relation

∆S (i)
ba =

∆Q
(i)
ba

Ti
=
Ea − Eb − (Na −Nb)µi

Ti
, (6)

where Ea and Na are the energy and electron-number for system state a and µi
is the electrochemical potential of reservoir i. Here ∆Q

(i)
ba is the change in heat in

reservoir i associated with the transition a→ b.

Compute the steady state, the efficiency (for power production and for refrigera-
tion), and the value of the electrochemical potential difference µ = µR − µL (for
simplicity, set µL = 0) such that the Carnot efficiency is achieved.

Note: the particle current into the system from reservoir i is

Jρ,i(t) = 1
2

∑
ab

(Nb −Na) I(i)ba (t), (7)
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where the probability current for the transition from state a to state b at time t
due to reservoir i is

I(i)ba (t) = −I(i)ab (t) = Γ
(i)
ba Pa(t)− Γ

(i)
ab Pb(t) , (8)

and the factor of 1
2

is due to the fact that the sum over a and b counts each
transition twice. By analogy, the energy current out of reservoir i into the system
is

Ju,i(t) = 1
2

∑
ab

(Eb − Ea) I(i)ba (t). (9)

At steady state,

I(i)steadyba (t) = −I(i)steadyab (t) = Γ
(i)
ba P

steady
a − Γ

(i)
ab P

steady
b . (10)
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