Quantum thermoelectricity - a few exercises

1. Show that the Onsager reciprocal relation II = T'S between Peltier coefficient II
and Seebeck coefficient S (T is the temperature) is valid, for a two-terminal system
described by Landauer scattering theory, also when a generic magnetic field B is
applied, that is, II(B) = 7'S(B) (which is different from the Onsager-Casimir
relation II(B) = T'S(—B)).

2. Given a scatterer connected to two reservoirs (L, R), in the steady-state the entropy
of the scatterer does not change in time, while the rate of change of entropy in the
reservoirs is 5”1 = —Jp;/T;, with i = L, R, and Jj,; heat current out of reservoir ¢
(at temperature T;) into the scatterer. Show that, within linear response, the total
entropy production reduces to S = Fod. + Fp ;. Here J, and J,. are the heat and
electric currents, while the thermodynamic forces are F, = AV/T (where AV is
the applied voltage) and Fj, = AT/T? (AT = Ty, — Tg). Discuss generalization of
this problem to N reservoirs.

3. Compute the transmission probabilities T;; (i, = 1,2, 3) for a system made of two
dots in series, each with a single energy level, described by the Hamiltonian:
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Suggestion: use the Fisher-Lee formula:
T; =T [[GT; G, (3)

where the broadening matrices I'; = i(3; — Ej) and G the retarded Green’s function
of the system.
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4. Find the optimal transmission function which maximizes the thermoelectric figure
of merit ZT in the case when thermal conductivity is dominated by phonons.
Suggestion: consider the transmission function as an infinite set of slices each of
width 0 — 0, where we define 7, as the transmission of slice 7, which sits at energy
E,.

A slice Y

5. Consider a quantum dot coupled to left (L) and right (R) reservoirs. The simplest
case is that in which we neglect spin and assume the charging energy for double-
occupancy, U, is much bigger than all other energy scales (temperatures, biases,
etc.). Then we only have two system states 0 (dot-level empty) and 1 (dot-level
singly occupied), with energies Fy = 0 and E; = €7, respectively. Then, the rate
equation for the dot’s dynamics is
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where Iy, = F,()? + F,()g”). Here P;(t) is the probability to find the dot in state i at
time t. Moreover, the rates obey the local detailed balance condition

P =1l exp [-AAD [k . (5)

where A&”b(ai) is the change in entropy in reservoir ¢ when it induces a system
transition from a to b. This entropy change is given by the Clausius relation
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where E, and N, are the energy and electron-number for system state a and p;
is the electrochemical potential of reservoir 7. Here AQIEZG) is the change in heat in
reservoir ¢ associated with the transition a — b.

Compute the steady state, the efficiency (for power production and for refrigera-
tion), and the value of the electrochemical potential difference y = pur — pp (for
simplicity, set p;, = 0) such that the Carnot efficiency is achieved.

Note: the particle current into the system from reservoir ¢ is

Joi(t) = 1D (Ny = N) I (), (7)
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where the probability current for the transition from state a to state b at time t
due to reservoir 7 is

() = ~Z)(t) = T\ P(t) — T By(t) (8)

a

and the factor of % is due to the fact that the sum over a and b counts each
transition twice. By analogy, the energy current out of reservoir ¢ into the system
is

Jui(t) = 53" (By — o) (1), (9)
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At steady state,
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