Quantum fluctuation-dissipation relations

Juan MR Parrondo

Universidad Complutense de Madrid (Spain) College on Energy Transport and Energy Conversion in the Quantum Regime. ICTP, August 2019

Lecture 1

1. The susceptibility of a classical damped harmonic oscillator of mass m, frequency ω_0 and friction coefficient γ , perturbed by a uniform field F(t), is (section 1.4):

$$\chi_{Fx}(\omega) = \frac{1}{m(\omega_0^2 - \omega^2) - i\gamma\omega}$$

- *a*) Calculate the Green function and the response function in the time domain.
- b) Find the static susceptibility and compare it with the static susceptibility of an oscillator at temperature T given by the fluctuation-dissipation theorem (section 1.2). Discuss the dependence of the static susceptibility on temperature and γ.
- *c)* Using the FDT, calculate the static susceptibility of a quantum harmonic oscillator at temperature T. Discuss the difference between the classical and the quantum case.
- 2. Using time-dependent perturbation theory (your favorite version), calculate the response function $\phi_{AA}(t)$ for a quantum system with Hamiltonian $H = H_0 f(t)A$ if the reference state is an eigenstate $|\psi_i\rangle$ of H_0 : $H_0 |\psi_i\rangle = E_i |\psi_i\rangle$. Consider the particular case of a harmonic oscillator and compare the result to the one obtained in exercise 1*c*).

Lecture 2

3. A Markov chain is *reversible*, if any trajectory (i₁, i₂,..., i_{n-1}, i_n) is observed with the same probability as its time reversed (i_n, i_{n-1},..., i₂, i₁). Prove that detailed balance, i.e., P_{ij}π_j = P_{ji}π_i, where π_i is the stationary probability corresponding to the transition matrix P_{ji}, is a sufficient condition for reversibility in the stationary regime. Prove that for a reversible process

$$\langle B(t_n)A(0)\rangle = \langle B(0)A(t_n)\rangle$$

and $\phi_{AB}(t) = \phi_{AB}(-t)$. Extend the discussion to quantum Markov processes.

Lecture 3

4. Project. Obtain the approximate response function of a classical or quantum complex network using the appropriate family of observables (section 3.4).