Press Chapman & Hall/CRC Data Mining and Knowledge Discovery Series LARGE-SCALE MACHINE LEARNING IN THE EARTH SCIENCES Ashok N. Srivastava, Ramakrishna Nemani, and Karsten Steinhaeuser CRC CRC Press

Valentine & Trampert (2012)

Examples in Geo

Figure 1. 'Spot the seismogram'. Four 500-point time-series, normalized to take amplitudes in the range [-1, 1]—but the seismogram has sufficient characteristic features to make it instantly recognizable. From top: FTSE 100 closing prices, 2009 June–2011 May; monthly mean temperature for central England, 1950–1991 (Parker *et al.* 1992); Gaussian random noise; long-period surface wave seismogram.

Ross et al. (2018)

www.kaggle.com

The Workhorse: Convolution

- Most Geoscientific problems involve analysis of time-series, images, or volumetric data
- Fully-connected Neural Networks do not optimally leverage spatial correlations in the data
- Convolutional Neural Networks (CNNs) do a better job at this

Is this the same cat?

Convolutional Neural Networks (CNN)

Rationale: signal correlations are mostly local

CNN Properties: Shift-Invariance

CNN Properties: Scale-"Invariance"

CNN Properties

- Practically speaking, most CNNs are robust to:
 - ✓ Translation
 - ✓ Rotation
 - ✓ Scaling
- Intuition: CNNs look for local patterns ("features") in the data

CNN Architecture

CNN Features

Layer 1

Layer 10

Layer 20

Basic CNN Mechanics

See https://github.com/vdumoulin/conv_arithmetic for more

Basic CNN Mechanics

$$x_{j}^{(n)} = \sum_{i=1}^{16} k_{i} x_{i+dj}^{(n-1)}$$

$$x^{(n)}[i,j] = (K * x^{(n-1)})[i,j]$$

Basic CNN Mechanics

1 convolution layer:

- $k_x \times k_y$ kernel size
- f filters (in this example: 4)
- Input: $N_x \times N_y \times N_f$
- Output: $N_x \times N_y \times f$

Downsampling / pooling

- Input data often contains redundant information
- Incremental downsampling of the data: pooling

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

CNN Architecture

Small Network – Big Reach

- In fully-connected networks, the size of a layer is proportional to the size of the input: O(n)
- Number of weights scales as $O(n^2)$
- Input of 1000 elements => 1M weights
- Larger networks require more data and more time to train

Small Network – Big Reach

- CNN: size of a layer is O(1) (constant, depending on kernel size)
- Kernels in CNN are usually small (3x3, 7x7, etc.)
- Fewer parameters = faster training, less data
- Or: make network much bigger (= deeper)

Time for dirty hands again...