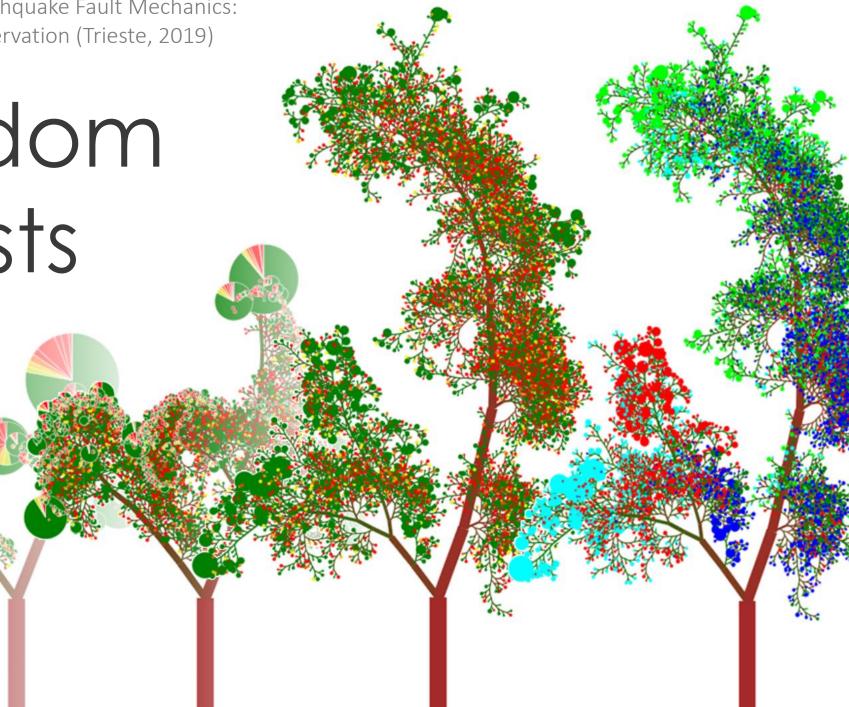
Advanced Workshop on Earthquake Fault Mechanics: Theory, Simulation and Observation (Trieste, 2019)

Random Forests



http://www.rhaensch.de/rfvis.html

Al vs. ML vs. DL

Artificial Intelligence (AI)

- Chess computers
- Computer games
- Robotics
- Decision policies

Machine Learning (ML)

- Random Forests
- Support Vector Machines

Deep Learning (DL)

Neural Networks with many (up to hundreds) of "layers"

What's the difference?

- Neural Networks make decisions based on... well... *something*
- Random Forests (RF) make decisions based on well-defined rules
- RFs are easier to interpret, decision process can be visualised
- ... but RFs require a particular type of input

Example: Anderson's Irises

Iris setosa

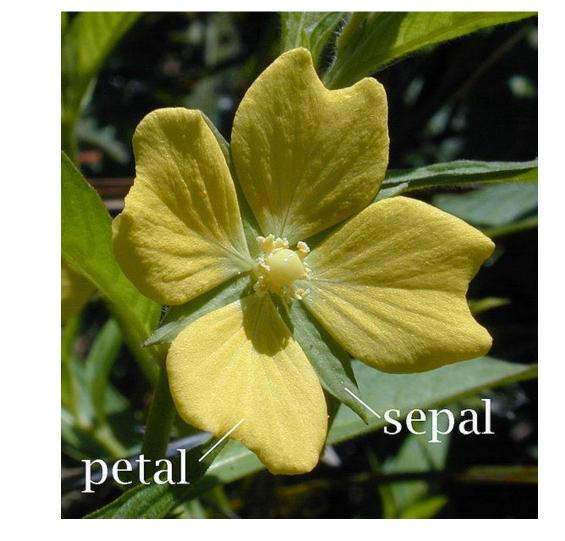
lris virginica

Iris versicolor

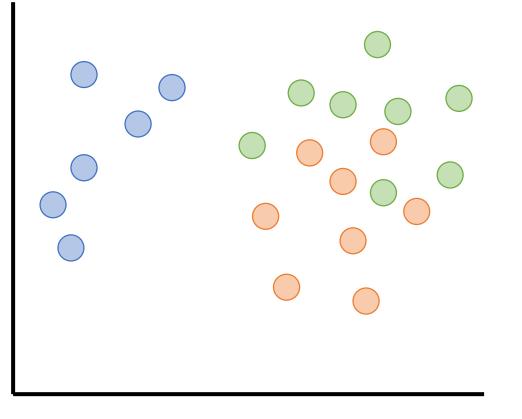
Wikipedia

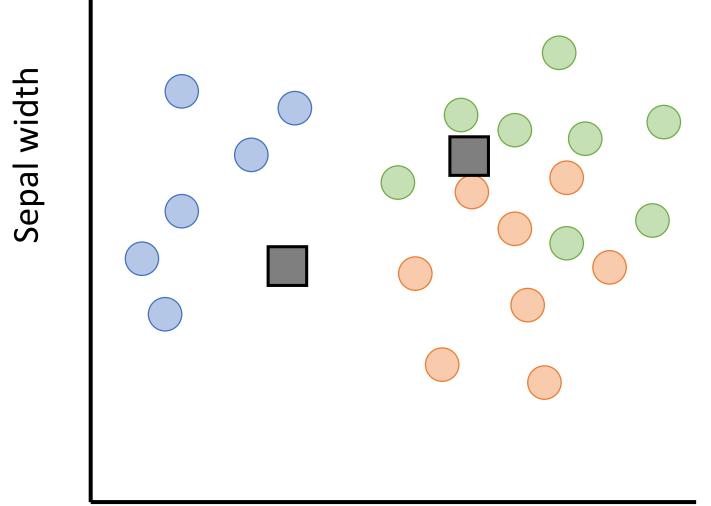
Example: Anderson's Irises

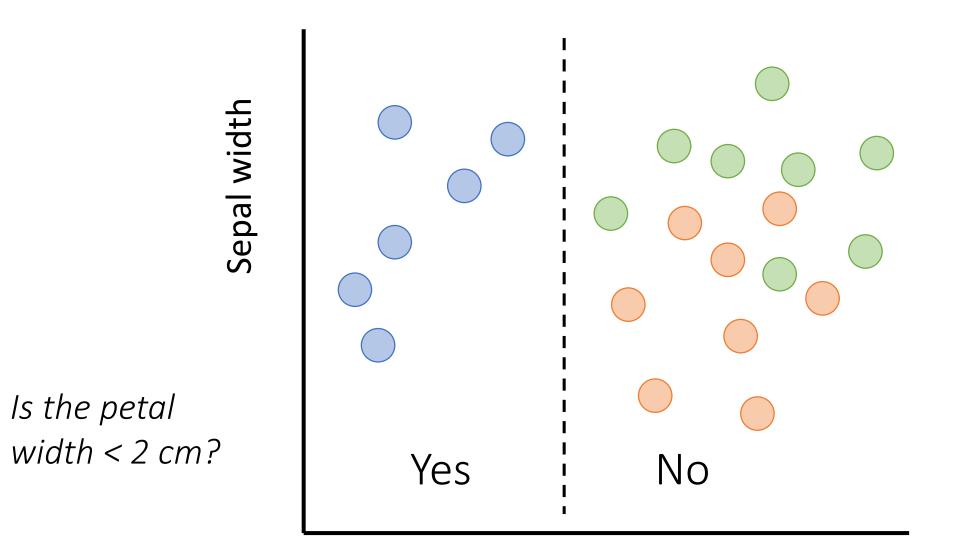
https://en.wikipedia.org/wiki/Sepal

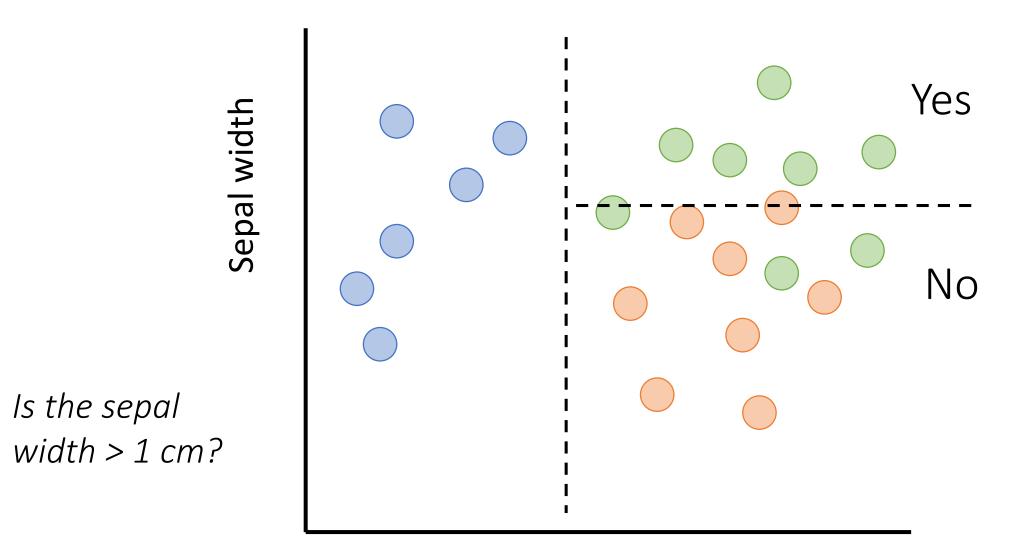


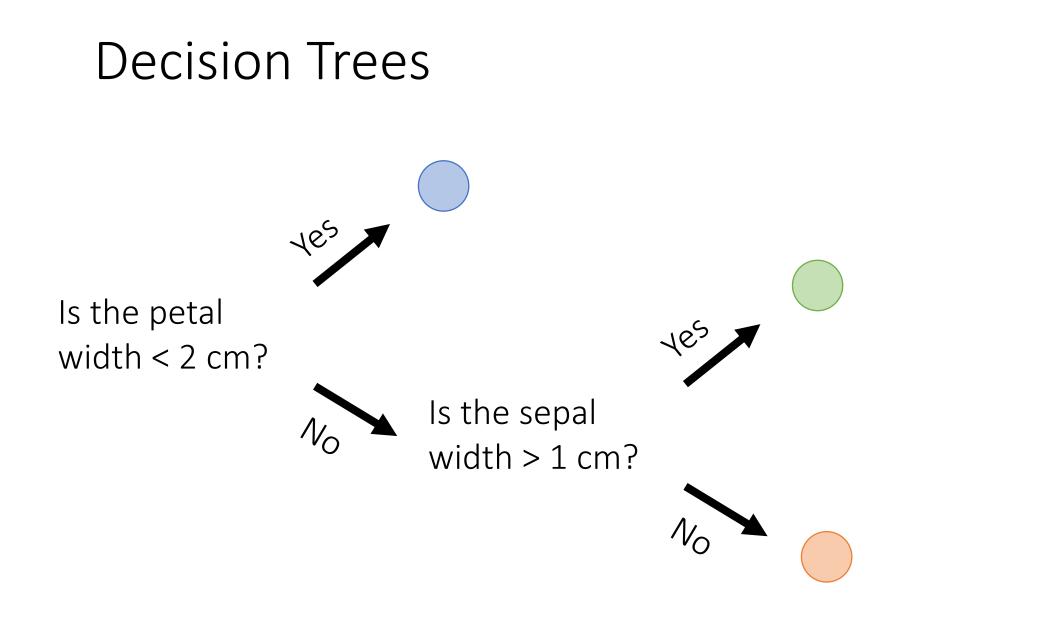
Sepal width

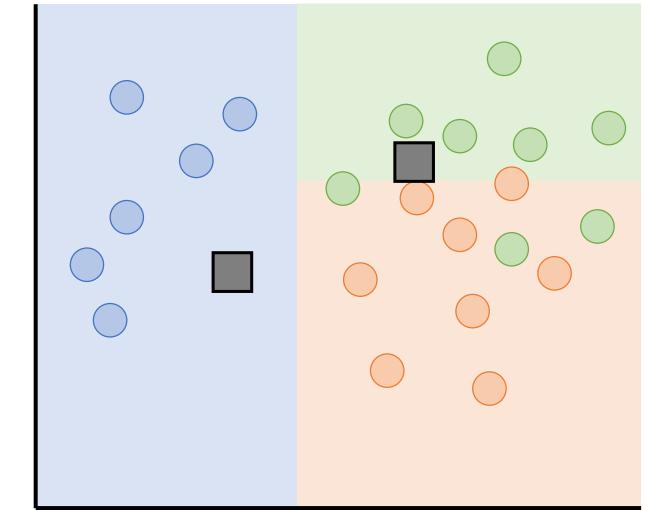




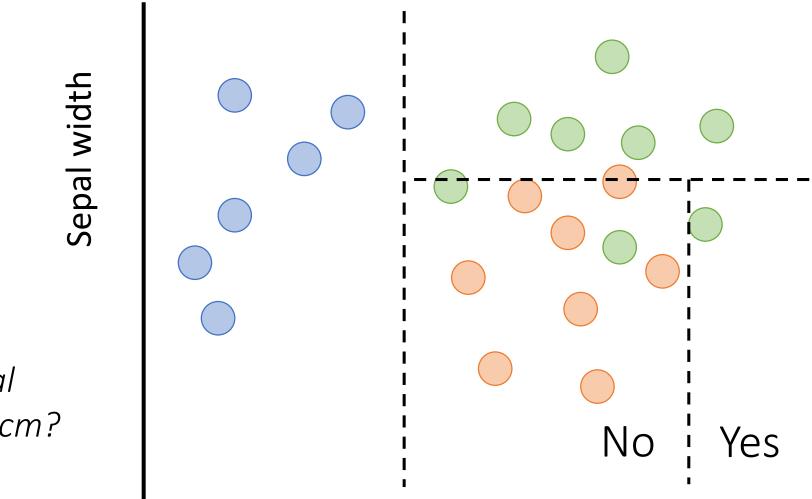




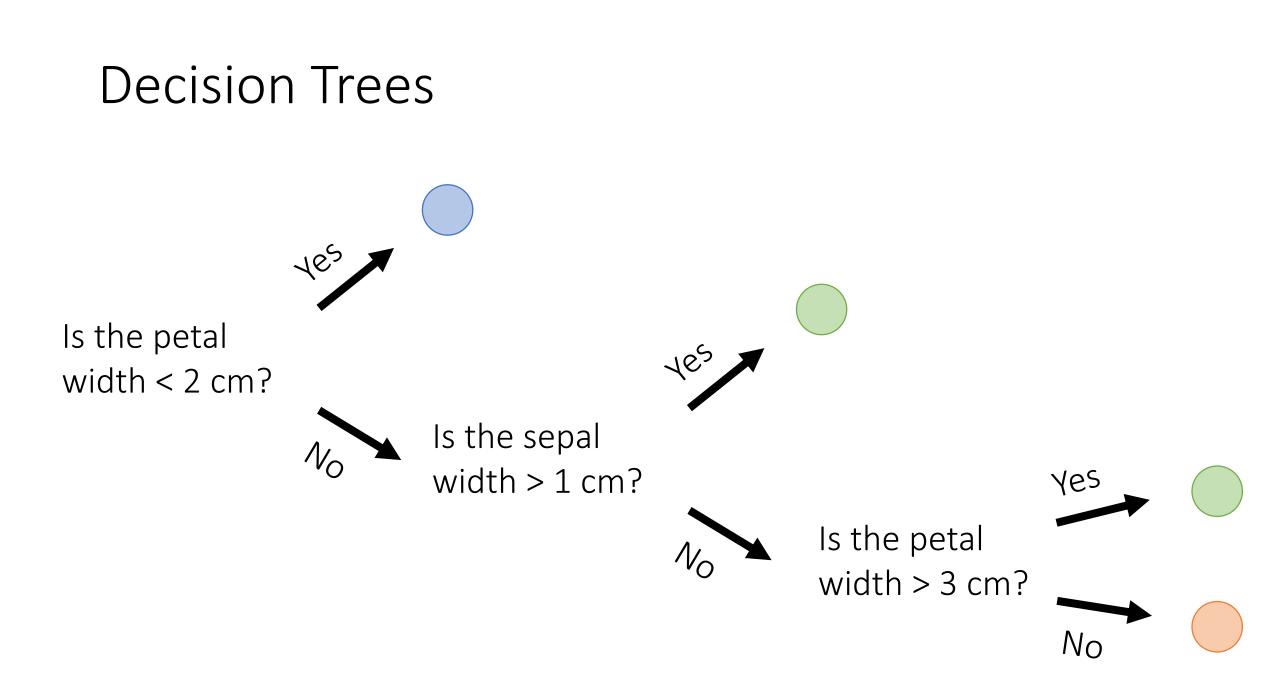


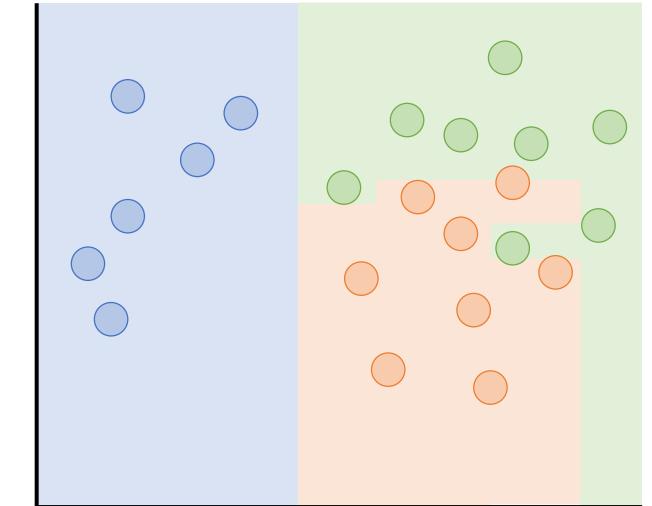


Sepal width

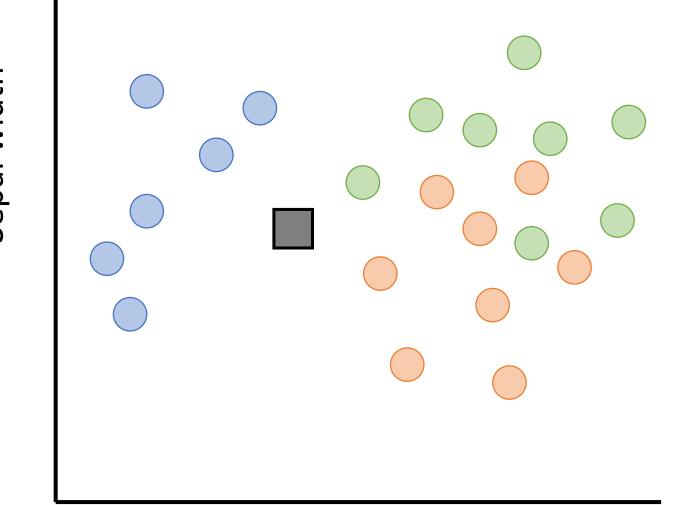


Is the petal width > 3 cm?





Sepal width



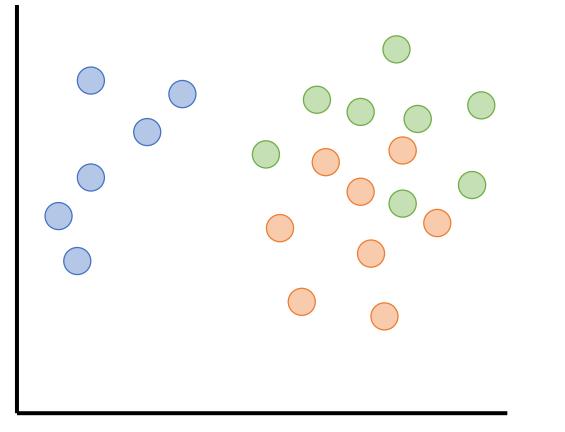
Sepal width

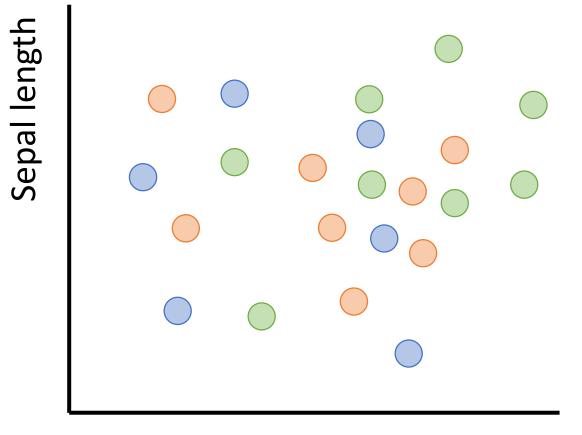
RF: Democracy of Decision Trees

- Decision Trees make decisions that split the data most efficiently
- Two trees with different data will make different decisions
- Random Forests:
 - Create *N* Decision Trees
 - Give each tree a different subset of the data (randomly)
 - Average the predictions of all the trees in the "forest"

Visualise feature importance

- Input data has "features" (sepal width/length, petal width/length)
- Which of these features is most important?





Petal length

Visualise feature importance

- Input data has "features" (sepal width/length, petal width/length)
- Which of these features is most important?
- With RFs it is possible to "calculate" relative importance of features

Application of RF

AGU PUBLICATIONS

Geophysical Research Letters

Estimating Fault Friction From Seismic Signals in the Laboratory

Key Points:

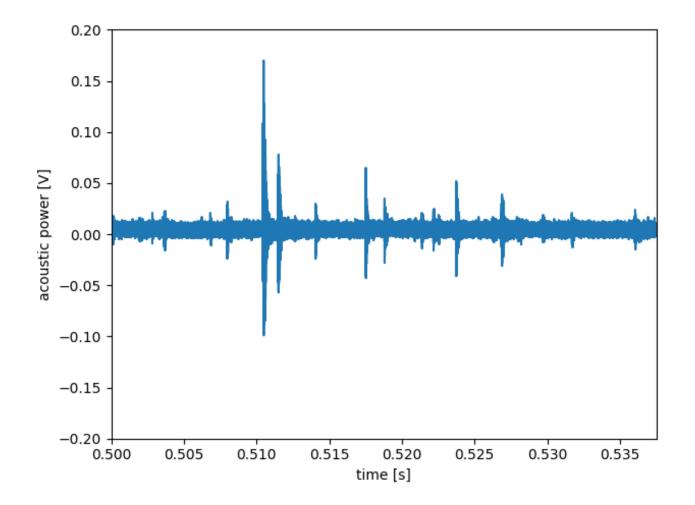
• Machine learning models can discern the frictional state of a laboratory fault from the statistical characteristics

RESEARCH LETTER

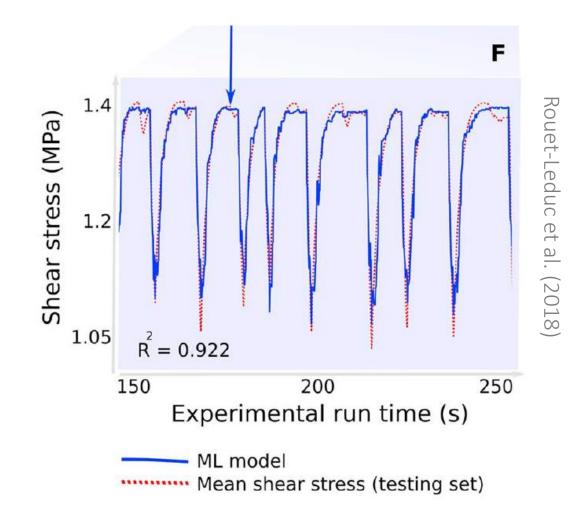
10.1002/2017GL076708

Bertrand Rouet-Leduc¹, Claudia Hulbert¹, David C. Bolton², Christopher X. Ren³, Jacques Riviere^{2,4}, Chris Marone², Robert A. Guyer¹, and Paul A. Johnson¹

Application of RF



Application of RF



RFs only accept "features"

- RFs are not suitable to analyse time series data (seismograms, GPS) or higher-dimensional data (spectrograms, images)
- Quality of predictions depends on selected features ("feature engineering")
- Interpretation of certain features not always obvious
 - What is the meaning of the kurtosis of the signal squared?

RF vs DL

- Random Forests are more interpretable, and are usually easier/faster to train (+ require less data)
- DL facilitates a wide range of architectures to handle different types of data, and are more flexible
- Pick the right tool for the job!

Tutorial: Estimating EQ Damage

- After the 2015 Gorkha earthquake (M_w 7.8) the Nepalese government initiated a large survey of the structural damage across the country
- For each building, the damage was classified as
 - 1. No/little damage
 - 2. Moderately damaged
 - 3. Severely damaged

Tutorial: Estimating EQ Damage

- In addition, various socio-economical factors were recorded:
 - Building's surface area, height, number of floors
 - Construction materials, foundation type
 - Primary use (residential, governmental, educational)
 - Number of families
 - Etc.

Tutorial: Estimating EQ Damage

DrivenData Challenge:

Given the socio-economical factors (= features), predict the damage class of the building (1, 2, 3)