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Faults in nature
Earthquakes occur on Faults: But how do they look like?

* Faults are not isolated (segmented and linked, irregular and rough at all
scales)

Dawers & Anders 1995
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Schematic map views of fault structures at different scales
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How faults may looks at depth and shallow?

~100 m wide o
trapping Jsp-‘t.lc‘u.lre

F

~1-2 km wide .~

anisotropic la)ﬁ

(Ben-Zion et al, 2007)



Idealization of faulting for rupture dynamic 3%&@

All is about cracks:

» When active during earthquakes, dominantly operate as
dynamically running shear cracks

» Then it is in principle a Fracture Mechanics problem

» Fracture Mechanics: Quantitative description of the mechanical
state of a deformable body containing a crack or cracks.

» Then Dynamic Rupture Models have their foundation in Fracture
mechanics concepts.

» Dynamic models usually idealize the earthquake rupture as a
dynamically running shear crack on a frictional interface
embedded 1n a linearly elastic and/or non linear continuum.

» Incorporation of small scale complexities in numerical simulations
requires high resolution models
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Cohesive zone (Fracture mechanics) and friction model

* Models
-Constant (Barenblatt, 1959)
-Linearly dependent on distance to crack tip (Palmer and Rice, 1973; Ida,

1973)
-Linearly dependent on slip (Ida, 1973 Andrews; 1976)

For the scale of earthquake modeling, G, 1s a
mesoscopic parameter, contains all the
dissipative processes in the volume around the

z/

¢ Crack tip

crack tip: off-fault yielding, damage, micro- T A i
cracking etc. ‘ Coesive zone

-They are mapped on the fault plane.
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Stress and friction on the fault (crack)

The earthquake rupture can be described as a two-step process: (1) formation
of crack and (2) propagation or growth of the crack. The crack tip serves as a

(The cohesive zone: break down process that needs to

be accurately solved)

Stress concentration

- - _ \ _'IY':'
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_Yielding stress

S Stress on fault

Fault rupture o o S
—— Friction sliding N

_— ' :\;\-Crack tip

(Rupture front)




Friction laws: Slip weakening 3%@@1‘

J Thermal pressurization? |

T
Aacture Energy

ryz-s(do —5) _|_TdS(do +7)
dy(s+y) dy(s+y)

Ta

nput requirement:
y = Define No-linearity y >>s  then ~ Linear weakening

7, = Initial shear stress, r, = Static friction, 7, = Dynamic friction

d, = Critical slip-weakening



Friction laws: Rate and state 3%0&33

Aging law (Dieterich, 1986; Ruina, 1983)

(its basis in laboratory experiments)

r (V,0)=0, [fo —I—aln(V/V())+b1n(V()9/L):|

0=1-V0/L

@ and y = State variables
V = Sliprate ( V, = steady state reference, V,, = weakening)
J = Friction coeficient (f = steady state, f, = at steady state V, , f = weakening)

a,b = Friction parameters



Friction laws: Rate and state 3%&@
Slip law o, (V.0)=c, [ aln(V/V,)+y ]

v=-—1/-1.0)]

£ )= fy=(b=a)n(V/V,)
Strong velocity weakening (Flash heating): same as slip law, but

Motivated by high-speed rock sliding experiments (e.g., Tsutsumi and Shimamoto, 1997; Di
Toro et al., 2004; Han et al., 2010; Goldsby and Tullis, 2011)

Sotasing = Jo— (=)W (V/Vy) if V<V,
S H | St =LV VST,

6@ and y = State variables

-

S V) =+

V' = Slip rate ( ¥, = steady state reference, V, = weakening)
J = Friction coeficient (f = steady state, f, = at steady state V, , f = weakening)

a,b = Friction parameters
(La Pusta et al., 2000; Noda et al., 2009; Rojas et al., 2009; Dunham et al., 2011; Shi and Day, 2013)
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Volume domain of interest
(a piece of the earth)

-

Fault
(a discontinuity in the earth)




Problem statement for rupture modeling Q’MM

Tectonic loading
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Faqu’fupture
(Dynami'é‘ally’ 'propagates e

~as.a running shear crack)




Mathematical representation 3%@!‘

Elastodynamic coupled to frictional sliding
(Highly non-linear problem)

ij pa9pVq

T =T

—_— C
<———

0<t.=f(0,S 5P, YP,..

Friction constitutive equation
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Fault-surface boundary conditions

For shear (nonlinear) For opening (nonlinear)

o =0
T—7T, <0

U =20
oU =0
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Simplification of fault geometry for earthquake dynamic
(depending of numerical method: FDM, FEM, SEM,DG,BIEM

d Dawers & Anders 1995
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Simplification of fault geometry for earthquake dynamic
(depending of numerical method: FDM, FEM, SEM,DG,BIEM

d Dawers & Anders 1995
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Simplification of fault geometry for earthquake dynamic
(depending of numerical method: FDM, FEM, SEM,DG,BIEM

d Dawers & Anders 1995
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Numerical techniques for rupture dynamic 3%@!’

http://scecdata.usc.edu/cvws/code_descriptions.html

Spontaneous Rupture Code Descriptions
(There are also other codes outside of this project)

Dunham - MultiDimensional Spectral Boundary Integral Code (MDSBI)
Aagaard - Finite Element Code (EqSim)

Ely - Support Operator Code (SORD)
Aagaard et al. - Finite Element Code (PyLith)
Kase - Finite Difference Code

Ampuero/Kaneko/Lapusta - Spectral Element Code (SPECFEM3D)
Kozdon - AMR code (Tetemeko)

Andrews - 2D Code (SCOOT)
Liu/Lapusta - Spectral Boundary Integral Code

Andrews/Song - 3D Code (Dynelf)
Ma - Finite Element Code (MAFE)

Barall - Finite Element Code (FaultMod)
Oglesby - Finite Element Code (DYNA3D)

Chen/Zhang/Zhang - Curved-Grid Finite-Difference (CG-FDM)
Olsen - Finite Difference Code (AWM)

Cruz-Atienza - Finite Volume Code
Pelties - 3D Discontinuous Galerkin Code (ADER-DG)

Day - Finite Difference Code (DFM)
Pitarka - Finite Difference Code (FDMSPLIT)

Duan - Finite Element Code (EQdyna)
Tago/Cruz-Atienza - 3D Discontinuous Galerkin Code (DGCrack)

Duruw/Dunham/Bydlon - Finite-Difference Quake and Wave (FD-Q-Wavel
Templeton - Finite Element Code (ABAQUS)



Fault representation methods for numerical simulation 3%@!‘

e Traction at Split-node method
Fault Discontinuity explicitly incorporated
(Andrews, 1973; DFM model: Day, 1977, 1982;
SGSN model, Dalguer and Day, 2007)

e “Inelastic-zone” methods:

Fault Discontinuity not explicitly incorporated
- Thick-fault method (TF) (Madariaga et al., 1998)
- Stress-glut (SG) method (Andrews 1976, 1999)



Fault representation methods for numerical simulation 3W
Traction at Split-Node method
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Day, 1982; Day et al, 2005)
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Staggered-Grid Split-Node Method (SGSN)
(Dalguer and Day 2007, JGR)



Fault representation methods for numerical simulation 3.1%@_3

u* = split-node velocities (+,- side of fault, respectively)
R* = stress divergence terms from FD eqns (+.- side)
M =nodal mass factors from FD eqns (+,- side)

T= split-node traction vector (no jump)

a = interface area of split node

Central Differencing in time (representation of equation of motion on fault

i (1+0112) =i (- At/ 2)+ A(M*) 4R (1) a| T, (1)-T, ]}
s, =u, (t+At/2)—u, (t+At/2) (Slip velocity)

7 for [Ty +@y]" <z
e (7. j‘(lf > for  [@y+@)]" >7

Compute “trial” traction T, (enforces continuity of tangential velocity
and continuity of normal displacement.
Then actual nodal traction 7, (tangential components v=x,y)
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“Inelastic-zone” Fault models (in Staggered Grid FDM)
(Dalguer and Day, 2006, BSSA)
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(Andrews 1976, 1999) (Madariaga et al., 1998)



Fault representation methods for numerical simulation 3.1%@33

“Inelastic-zone” Fault models

Nodal Stress by Central Differencing in time gives (example o _ )
oc.t)=0_(t—At)+Ar2ué_(t—At/2)
addition of an inelastic component to the total strain rate (I. =0 )
0, =T(1)=T,(t—A)+A2u| é_(1—Atf2)— €L (- A1f2))
Compute “trial” traction T setting £” (¢t — Az/2)=0

T.(t)=T.(t—At)+Ar2ué_ (t—At/2)
Then set the fault plane traction to

T.(t) ifT, (1)<t
T if 7.(t)>1,

ro-|
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Stress-glut method (SG) (Andrews 1976, 1999)
Frictional bound enforced on one plane

of traction nodes |
Calculate inelastic component ¢

T.()=T,(1)
2 UAL

EF(t—At/2)=

Calculate the total slip rate by
integrating £” over the spatial step Ax

s, (1—At/2)=2AxE" (1 —At/2)
Thick-fault method (TF) (Madariaga et al, 1998)

-Frictional bound enforced on 2 planes of
traction nodes

-Slip-velocity given by velocity difference
across 2 unit-cell wide zone

Sx (t - At/z) = Z/‘[i’*') (Z’ - At/z)— L.[i_) (t . At/2) i : :‘v_jt__:lftflf'i::;;plunc " @ [;._




Numerical resolution to solve rupture dynamic 3%&@

The cohesive zone for a slip-weakening crack

- TS A
_ Slip Stress Ts
e concentration
- —
¢ T
dd
Ta

. X\_Crack tip
A (Rupture front)
Cohesive zone

v —>
d, Slip

T.=Static yielding stress; T,=Dynamic yielding stress
To=Initial shear stress; dy=Critical slip distance

At=T,- T; = Stress drop

» At the scale of natural earthquakes, the cohesive zone examines the crack tip phenomena
at a level of observation, in which the fracture energy Gc is a mesoscopic parameter which
contains all the dissipative processes in the volume around the crack tip, such as off-fault

yielding, damage, micro-cracking, etc.

» In the cohesive zone, shear stress and slip rate vary significantly and proper numerical
resolution of those changes is crucial for capturing the maximum slip rates and the rupture
propagation time and speeds. Therefore, the cohesive zone developed during rupture
propagation need to be accurately solved to obtain reliable solution of the problem.



Numerical resolution to solve rupture dynamic 3%&@

Approximate estimation of the cohesive zone width
From linear fracture mechanics for 2 dimensional cases:
The zero-speed cohesive zone width:
o  U,d, for m = 1l, lll, respectively mode Il and mode Il rupture

Po= 32 (tg —14) M =H Hnp = p/(1-v); u =shear module; v= Poisson’s ratio

Cohesive zone width at large propagation distances (for mode III crack problems):
L = propagation distance.

A 9 (udO)ZL . Ll Lo=half of critical crack length
=—(—] L~ >
16 \ At for 0 L pdo(z — 70)
o~ TAT?

Dimensionless ratio Nc (number of grids in the cohesive zone)
AN

Ne = Ax  Ax = grid size (grid interval)

» This is good initial guidance to define the spatial resolution needed for the test
problem.

» Both Ay and A should give good initial guidance as to what kind of spatial resolution

will be needed in dynamic rupture propagation problems.
» An appropriate Nc would depend on the numerical technique and type of fault

representation method. It can be determined after a convergence analysis of the

solution. Recommended at least Nc=>2
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SCEC 3D Rupture Dynamics Code Validation Project
(coordinators Ruth Harris, Ralph Archuleta)

Fault model Slip Weakening Friction model
(Test Problem Version 3, TPV3)
~Y C
?P A T, Fracture Energy
- E PI
'5 3km | becfoooeeeee- AN X 'CO (Ida, 1972; Andrews, 1976)
3km | L DD L
Tq
30km d, Slip (s)

Numerical resolution measured by

A = cohesive-zone width (normal to rupture front)

Ax = spatial step size (in numerical solution)
(Dalguer and Day, 2006, BSSA)
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Parameters for SCEC test problem 3

Within Fault Area of 30 km x 15km| (Outside
Parameters . - -

Nucleation | Outside nucleation Fault Area
Initial shear stress (7y), MPa 81.6 70.0 70.0
Initial normal stress (o;,), MPa 120.0 120.0 120.0
Static friction coefficient (x) 0.677 0.677 infinite
Dynamic friction coefficient (z,) 0.525 0.525 05‘25
Static yielding stress (7, = 1;0,), MPa 81.24 81.24 mfinite
Dynamic yielding stress (7, = u,0;,), MPa ?Z (6) 3300 3300
Dynamic stress drop (A7=1,-7;), MPa ' | .
Strenoth MP -0.36 11.24 mfinite

rength excess (7 - 79), MPa 0.40 0.40 0.40

Critical slip distance, dy , m

Homogeneous medium:
P wave velocity=6000 m/s

S wave velocity=3464 m/s
Density =2670 kg/m3.

» Nucleation size: L,=1.516km (half of critical crack length), then assumed 3km x 3km

» Zero-speed cohesive zone Ay = 620m for mode III, and Ay = 827m for mode II. They can
be considered as the upper bound of the problem

» A at the maximum propagation distance L=7.5km along the mode III =251m.

» Assuming a grid size Ax=100m, Nc = 6 to 8 for the upper bound, and 2.5 for the

propagation distance.

» Then a good spatial resolution for the problem requires Ax <100m.
» The accuracy reached by this resolution will depend on the method used to model the
fault as well as the numerical technique.

(Dalguer and Day, 2006, BSSA)
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SG 1nelastic zone - vs - Split-node models
Cohesive zone development
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TF 1nelastic zone - vs - Split-node models
Cohesive zone development
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N, (Cohesive Zone Resolution)
o 8 65 4 3 2 ! 05

=

10 >

RMS Rupture Time Difference (%)

0.05 0.1 02 03 0405 07 1
Summary of series of papers: Ax (Km)
(Day, Dalguer, et al, 2005, JGR; Dalguer and Day, 2006, BSSA; 2007, JGR)
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Contour plot of the rupture front for the dynamic rupture test problem

——DFM50 - - -SGSN100 (a) | — DFM50 - -SG50 (b)

-1.5
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SG 1nelastic zone - vs - Split-node models
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Slip rate and shear stress time history profiles along the x axis (in-plane
direction) and the y axis (antiplane direction) (results for the DFMS50)
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» Here we have described the numerical algorithms of two well known methods to
represent fault discontinuity for spontaneous rupture dynamic calculation: the so-
called traction at split-node (TSN) scheme and the inelastic-zone stress methods that
are mainly used for FEM and FDM techniques.

» There are other developments of fault representation and wave propagation
techniques, such us those used in Finite Volumes (FV) methods (e.g. Benjemaa et al.,
2009) and high order discontinues Galerkin (DG) methods (e.g. de la Puente et al.,
2009; Pelties et al., 2012). The nature of the fault representation in these methods is
different than the TSN and fault zone method described here. The VF and DG
incorporate formulations of fluxes to exchange information between the two
surfaces of contact by solving the Riemann problem (e.g. LeVeque, 2002).

» References and additional description of what have been presented here can be
found in: Dalguer, L. A. (2012), Numerical Algorithms for Earthquake Rupture
Dynamic Modeling. Chapter 4 In “The mechanics of faulting: From Laboratory to Real
Earthquakes”, Research Signpost, 93-124, ISBN 978-81-308-0502-3, Editors A. Bizzarri
and H Bath. This chapter-paper is included in the material of this lecture.
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