
Practical for the Advanced Workshop on Earthquake Fault Mechanics: Theory, 
Simulation and Observation (2-14 September 2019, Trieste, Italy) 

Lecture: Dynamic Rupture Simulation Methods 

By Dr. Luis A. Dalguer (luis.dalguer@alumni.ethz.ch), 3Q-Lab GmbH, Switzerland 

Objective: 

The idea of this practical is to the student understand conceptually the implementation, in a 
numerical technique, the mixed boundary condition in an elastodynamic problem coupled to 
a friction law, that is used for earthquake rupture dynamic. You are not going to code. What 
you are going to do is to take a peace of paper and write and develop your own 
implementation. And then, during this workshop or after you can take your implementation to 
code and test it with the problem given at the end of this document. 
Attached to this document is a matlab script file “Friction_1Dwave.m” (and also in appendix) 
and a movie that content the solution of the given (file: dx25.avi). 
 
Brief introduction on dynamic rupture model concept. 
First	lets	define	kinematics	and	dynamics:	Kinematics	 is	the	branch	of	mechanics	that	
deals	 purely	 with	 motion,	 without	 analyzing	 the	 underlying	 forces	 that	 cause	 or	
participate	in	the	motion.	Dynamics	 is	the	branch	of	mechanic	that	deals	directly	with	
force	systems,	and	with	the	energy	balance	that	governs	motion	(Aki	and	Richard,	2002.	
Box.	5.3,	page	129).	

The	 main	 difference	 between	 these	 two	 models	 is	 the	 way	 in	 which	 the	 rupture	
discontinuity	on	the	fault	is	modeled.		The	kinematic	model	associates	the	earthquake	
with	 prescribed	 fault	 slip	 (as	 a	 function	 of	 position	 and	 time)	 without	 taking	 into	
account	the	physics	involved	in	the	rupture.	While	the	dynamic	approach	is	investigates	
the	physical	processes	involved	in	the	fault	rupture,	incorporating	conservation	laws	of	
continuum	mechanics,	constitutive	behavior	of	rocks	under	interface	sliding,	and	state	
of	 stress	 in	 the	crust.	The	 fault	kinematics	 (slip)	 is	determined	dynamically	as	part	of	
the	 solution	 itself,	 by	 solving,	 for	 example,	 the	 elastodynamic	 equation	 coupled	 to	
frictional	siding.		

Dynamic	models	can	be	described	as	a	two-step	process:	(1)	formation	of	shear	crack	
and	(2)	propagation	or	growth	of	the	crack.	The	crack	tip	serves	as	a	stress	concentrator	
(Fig.	1)	due	to	a	driving	force	(for	example,	tectonic	loading).	If	the	stress	at	the	crack	
tip	exceeds	some	critical	value	then	the	crack	grows	unstably	accompanied	by	a	sudden	
slip	and	stress	drops.	Once	a	fault	has	been	formed	its	further	motion	is	controlled	by	
friction	 sliding.	 Friction	 is	 the	 resistance	 to	 motion	 that	 occurs	 when	 a	 body	 slides	
tangentially	to	a	surface	on	which	it	contacts	another	body.	

	

	

	

	

	

Figure	1.	Idealized	model	of	a	crack	rupture	with	stress	concentration	in	the	crack	tip	
and	slip	in	the	friction	sliding	zone.	
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Questions	
  related	
  to	
  the	
  physics	
  of	
  rupture	
  

Dynamic	
  models	
  have	
  greater	
  potential	
  for	
  addressing	
  science	
  questions	
  of	
  earthquake	
  
rupture	
  phenomena:	
  

-­	
  What	
  are	
  the	
  physical	
  bases	
  for	
  earthquake	
  initiation	
  and	
  how	
  rupture	
  nucleates?	
  

-­	
  How	
  fast	
  does	
  the	
  rupture	
  propagate	
  during	
  earthquake?	
  

-­	
  Why	
  and	
  how	
  earthquake	
  rupture	
  stop?	
  

	
  -­	
  What	
  are	
  the	
  physical	
  basis	
  for	
  earthquake	
  rupturing	
  the	
  free-­surface?	
  

	
  -­	
  How	
  rupture	
  operates	
  during	
  an	
  earthquake?	
  

Beside	
   these	
   questions,	
   dynamic	
   rupture	
  models	
   have	
   also	
   greater	
   potential	
   to	
   study	
  
ground	
  motion	
  dominated	
  by	
  the	
  source,	
  for	
  example:	
  	
  

-­The	
  effects	
  of	
  surface	
  and	
  buried	
  rupture	
  on	
  ground	
  motion;	
  	
  

-­Directivity	
  pulses	
  due	
  to	
  subshear	
  and	
  supershear	
  rupture;	
  	
  

-­The	
  physical	
  limits	
  on	
  extreme	
  ground	
  motion.	
  	
  

-­The	
   physical	
   description	
   of	
   low	
   and	
   high	
   frequency	
   ground	
   motion	
   radiated	
   from	
   the	
  
fault.	
  

 
 
Split node fault representation 
 
Mathematical Formulation of the problem in an idealized one point fault 
Let assume the fault plane is perpendicular to the z axis and located at z=0. To simplify the 
problem, we will implement the mixed boundary condition in a 1D wave equation, so all the 
fields depend only on z. This reduces to the condition that exactly	
   the	
   same	
   thing	
   is	
  
happening	
  at	
  every	
  points	
  along	
  an	
  infinitely	
  fault	
  plane.	
  
Let use the velocity-stress form of the elastodynamic equations, in which the velocity v(z,t) 
and shear stress τ(z,t) are the dependent variables:  

 

 

 

 

Where  µ is the shear module and ρ the density. 

Let use the standard staggered grid finite difference for the spatial discretization of the 
equation (Figure 2). The fault normal is in the z direction and located at z=0. 
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Figure 2. Staggered-grid discretization of the 1D elastodynamic equation with grid cells 
(split nodes) adjacent to the fault plane. 

Rupture of the fault leads to a true discontinuity of velocity and displacement at z=0. 
Defining negative and positive sides of the fault (Figure 1). Slip velocity Δv, defined as the 
tangential velocity discontinuity, is the velocity of the positive side relative to negative side at 
z=0 
 
 
 
Which can be integrated to obtain slip. 
 
This velocity discontinuity leads to a stress boundary value problem in which the shear 
traction τf that acts at the frictional interface (fault) during rupture is conditioned to follow a 
constitutive law. The shear traction τf on the fault, that is exerted by the positive side upon 
the negative side, is opposed by an antiparallel shear traction, i.e., the negative side exerts 
traction -τf  on the positive side. The magnitude of τf  is bounded by the frictional strength τc 
 
 
 
 
The frictional strength τc is assumed to be proportional to normal stress  σn 
 
 
 
 
Where µf is the coefficient of friction that can follow any friction law. 
 
What to do? 
 
The best practice to understand how this problem works in a numerical model, is developing 
by yourself the formulation and coding it. Then take a piece of paper, a pencil and first 
develop your own implementation:  
 
1) Approximate the spatial derivatives of equations 1 at the split nodes  
To do that, write separate equations for each side of the fault, taking into account the shear 
traction τf acting at the interface, and its initial static equilibrium value τ0.  Introduce the 
following one-sided difference approximations for τ, applicable to the plus and minus sides 
of the fault, respectively. 
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The time derivatives of equation 1 at time t approximates by second-order central differences: 
 
 
 
Where Δt is the time step. 
 
2) Find the slip and slip velocity considering the boundary conditions 4 and 5. 
To do that, evaluate τf  to satisfy equation (4) and couple with the friction law given by 
equation (5). The most simple way to couple the wave equation with the friction models is 
satisfying the following two conditions: 

 
 
 

 
 
When slip velocity Δv=0 , there is continuity of tangential velocity, i.e, 

 
 

 
Using this condition, find the shear traction (lets call trial traction τ*) required to satisfy  eq. 
10.  
If τ* satisfy eq. (8) then τf =τ*,  if not, then τf =τc . 
 
 
3) Approximate the spatial derivatives of equations 1 and 2 at interior grid points.  
To do that, approximate the derivatives with a second-order spatial difference 
 
 
 
 
 
where φ represents an arbitrary stress τ or velocity component v  

	
  

4)	
  Approximate	
  the	
  free-­‐surface	
  boundary	
  condition	
  positioning	
  the	
  free-­‐surface	
  at	
  the	
  
stress	
  node	
  (see	
  figure	
  2)	
  and	
  set	
  stress	
  at	
  this	
  node	
  to	
  zero	
  

	
  

	
  

	
  

	
  

5)	
  If	
  you	
  finished	
  it!!,	
  then	
  you	
  can	
  code	
  it	
  in	
  any	
  programming	
  language	
  you	
  like	
  
(fortran,	
  matlab,	
  c,	
  c++,	
  etc…).	
  If	
  you	
  do	
  not	
  finish	
  now,	
  you	
  can	
  do	
  it	
  during	
  the	
  
conference	
  or	
  at	
  home,	
  and	
  contact	
  to	
  me	
  if	
  you	
  have	
  problems…	
  ;-­‐)	
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For	
  µf  (the coefficient of friction in eq. 5) you can use the slip weakening model given as 
follow: 

 

 

 

Where	
  Δu	
  is	
  the	
  slip,	
  µs	
  is	
  the	
  static	
  friction	
  coefficient,	
  µd	
  the	
  dynamic	
  friction	
  
coefficient,	
  d0	
  the	
  critical	
  slip	
  distance.	
  	
  

If	
  you	
  succeed	
  in	
  1D,	
  you	
  can	
  also	
  do	
  in	
  2D	
  and	
  3D!!!	
  

	
  

Test	
  problem	
  

Lets assume the fault is in the interface of two materials, plus side and minus side of the fault. 
We will let the fault break, i.e., one side of the fault will slide relative to the other side. 
Basically what we are going to solve is:  

1) Evolution in time of slip velocity, slip and stress on the fault 

2) wave radiated from the fault toward the free-surface. Due to different material properties, 
we will observe wave propagating at different speeds 

3) The effect of the free-surface on the radiated wave. 

Model geometry: 
L = 5000m; domain size (m) on each side of the fault 
Δz = 25m;  grid size  
  
Material properties:  
c+ = 4000.0 m/s; wave speed plus side of the fault 
ρ+ = 2670.0kg/m^3; density plus side of the fault 

 
 

 
c- = 2000.0 m/s; wave speed minus side of the fault 
ρ- = 2670.0kg/m^3; density minus side of the fault 

 
 

 
 Friction and initial stress:  
σn= 120e6 Pa; initial normal stress on the fault 
µs =0.677; static friction coefficient 
µd =0.525; dynamic friction coefficient 
τ0 =82.0e6 Pa; initial shear stress 
d0=0.4 m; critical slip distance (m) 
   
Simulation time 
tmax = 1.5*L/c+; 
  

� 

µ f = µs − (µs − µd )
Δu
d0

Δu < d0
µd Δu ≥ d0

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
[12]

� 

µ + = ρ+ (c+ )2     shear module plus side of the fault (Pa)

� 

µ− = ρ−(c−)2     shear module minus side of the fault (Pa)



Time discretization  (CFL=0.5)   
dt = 0.5*Δz/c+; time step 
nt = integer(tmax/dt)+1; Number of time steps 
 
Spatial discretization 
nz = ingeger(L/Δz)+1; Number of grid points   
 

Suggestions for other tests: 

You	
  can	
  play	
  with	
  the	
  grid	
  size	
  to	
  evaluate	
  convergence	
  and	
  numerical	
  oscillations.	
  Use	
  
the	
  same	
  data	
  above,	
  but	
  for	
  Δz=10m, 50m, 100m 200m 400m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX (matlab script). You can also find in the attached file “Friction_1Dwave.m” 

% Practical for the Advanced Workshop on Earthquake Fault Mechanics:  
% Theory, Simulation and Observation (2-14 September 2019, Trieste, Italy) 
% 
% Numerical implementation of Elastodynamic equation coupled to friction 
law for 
% rupture dynamic problems%  
% solved in a 1D wave equation with staggered grid scheme 
% and slip weakening friction law boundary conditions 
% 
% (the description of the problem is in a pdf file 
"Practical_Rupture_dnamic.pdf" 
% 
%%% By Luis A. Dalguer (luis.dalguer@alumni.ethz.ch)  
%%% 3Q-Lab GmbH, Switzerland 
% 
%============================================================= 
clear; 
% movie? T or F 
movie = 'F'; 
movfile = 'dx25.avi'; % file name for movie 
%model geometry 
L = 5000;% domain size (m) on each size of te fault 
h =  25; % grid spacing (m) 
  
% Material properties: wave speed, density, modulus 
% plus side of the fault 
c_plus = 4000.0; %wave speed (m/s) 
rho_plus = 2670 ; % density (kg/m3) 
mu_plus = rho_plus*c_plus^2; % shear modulus (Pa) 
  
% minus side of the fault 
c_minus = 2000.0; %wave speed (m/s) 
rho_minus = 2670 ; % density (kg/m3) 
mu_minus = rho_minus*c_minus^2; % shear modulus (Pa) 
  
  
% friction parameterization 
sigma= 120e6; %normal stress (Pa) 
mus=0.677; %dynamic friction coefficient 
mud=0.525; %static friction coefficient 
T0=82e6; %initial stress (Pa) 
d0=0.4; %critical slip distance (m) 
  
Ts=sigma*mus; %static frictionnal strength (Pa) 
Td=sigma*mud; %dynamic frictionnal strength (Pa) 
  
% simulation time 
tmax = 1.5*L/max(c_plus, c_minus); 
  
% time discretization (CFL=0.5)   
  dt = 0.5*h/max(c_plus, c_minus); %time step 
  nt = round(tmax/dt)+1; % Number of time steps 
  t = linspace(0,tmax,nt); % time vector 
   
% spatial discretization 



  nz = round(L/h)+1; % Number of grid points   
  zmin = -L; zmax = L; z0=0; 
   
  zv_plus = linspace(z0,zmax,nz); % velocity points plus side 
of the fault   
  zv_minus = linspace(z0,zmin,nz); % velocity points minus 
side of the fault 
   
  zs_plus = zv_plus+0.5*h; % stress points plus side of the 
fault 
  zs_minus = zv_minus-0.5*h; % stress points minus side of the 
fault 
   
   
  % set initial conditions to velocities and stresses 
   
  v_plus = zeros(1,nz); 
  v_minus = zeros(1,nz); 
   
  s_plus = zeros(1,nz); 
  s_minus = zeros(1,nz); 
  
   D=zeros(1,nt); %slip  
   V=zeros(1,nt); % slip rate 
   Ds=0; 
   Vs=0; 
scrsz = get(0,'ScreenSize'); 
%figure('Position',[scrsz(4)/10 scrsz(4)*0.8 scrsz(3)*0.8 
scrsz(4)*0.8]);  
figure('Position',[1 1 scrsz(3)*0.6 scrsz(4)*1.3]);  
%figure('Position',[1 scrsz(4) scrsz(3)*0.8 scrsz(4)*0.8]);  
  
if movie =='T' 
     mov = avifile(movfile); 
  end 
  
  
  
  % loop over time steps   
  for it=1:nt 
     
  %Trial traction. This equation was formulated solving Eq. 
(1) for the two sides of the fault 
  % assuming continuity of the tangential velocity with Eq. 
(6) (7) and (10) ((i.e, for a locked fault)  
   
  trial(it) = T0+ (s_plus(1)*rho_minus+s_minus(1)*rho_plus 
+Vs*h*rho_plus*rho_minus/(2*dt))/(rho_plus+rho_minus); 
     
  T (it)= trial(it); %Assume that traction T is equal to trial 
(the fault is locked) 
       
  % Evaluate friction (Slip weakening friction model); 
  fric=Td; 



  if Ds < d0  
  fric=(d0-Ds)*(Ts-Td)/d0 + Td; %( from eq. (5) and (12) 
  end 
   
  % update T if trial > fric to satisfay eq. (4)  
  if abs(trial(it)) > fric 
      T(it) = sign(trial(it))*fric;  
  end 
   
    % update velocities at t+dt/2 from stresses at t   
    % at interior grid points, with a second-order spatial 
difference     
    % Solving eq(1), using Eq. (7) and (11) 
    v_plus(2:nz) = v_plus(2:nz)+dt*(s_plus(2:nz)-s_plus(1:nz-
1))/(rho_plus*h);       
    v_minus(2:nz) = v_minus(2:nz)+dt*(s_minus(1:nz-1)-
s_minus(2:nz))/(rho_minus*h);  
  
    % at split nodes: %Solving eq(1), with Eq. (7) and (6) 
    v_plus(1) = v_plus(1)+dt*(s_plus(1)-(T(it)-
T0))/(0.5*rho_plus*h);  
    v_minus(1)= v_minus(1)-dt*(s_minus(1)-(T(it)-
T0))/(0.5*rho_minus*h);  
     
    Vs = v_plus(1)-v_minus(1);% slip velocity (Eq.3) 
    V(it) = Vs;% slip velocity 
    Ds=Ds+V(it)*dt; % slip 
    D(it)=Ds; % slip 
  
    % update stresses at t+dt from velocities at t+dt/2  
    % at interior grid points with a second-order spatial 
difference 
    % Solving eq(2), using Eq. (7) (but for stress) and  
Eq.(11) 
    s_plus(1:nz-1) = s_plus(1:nz-1)+dt*mu_plus*(v_plus(2:nz)-
v_plus(1:nz-1))/h; 
    s_minus(1:nz-1) = s_minus(1:nz-
1)+dt*mu_minus*(v_minus(1:nz-1)-v_minus(2:nz))/h; 
     
    % free-surface boundary condition (Eq. 12) 
    s_plus(nz) = 0; 
    s_minus(nz) = 0; 
     
    % plot current solution 
     
      subplot(4,1,1), 
plot(zv_plus,v_plus,'r',zv_minus,v_minus,'b','LineWidth',2) 
      set(gca,'fontsize',15) 
      grid 
      xlabel('z'), %ylabel('v(m/s)') 
      xlim([min(zv_minus) max(zv_plus)]) 
      ylim([-4.0 4.0]) 
      %axis([min(zv_minus), max(zv_plus),min(min(vn)), 
max(max(vn))]) 



      title(['Solution of velocity (m/s) at time t = 
',num2str(t(it),'%6.4f')]) 
       
      subplot(4,1,2), 
plot(zs_plus,s_plus/1e6,'r',zs_minus,s_minus/1e6,'b','LineWidt
h',2) 
      set(gca,'fontsize',15) 
      grid 
      xlabel('z'), %ylabel('stress(MPa)') %, \sigma(x)') 
      xlim([min(zs_minus) max(zs_plus)]) 
      ylim([-22 2]) 
      %axis([min(xv), max(xs),min(min(sn)), max(max(sn))]) 
      title(['Solution of stress change (MPa) at time t = 
',num2str(t(it),'%6.4f')]) 
       
      subplot(2,3,4), plot(t(1:it),V(1:it),'LineWidth',2) 
      set(gca,'fontsize',15) 
      xlabel('Time (s)') 
      ylim([0 6]) 
      xlim([0 tmax]) 
      title(['Slip velocity (m/s)']) 
      axis square 
       
      subplot(2,3,5), plot(D(1:it),T(1:it)/1e6,'LineWidth',2) 
      set(gca,'fontsize',15) 
      xlabel('Slip (m)') 
      ylim([62 82]) 
      xlim([0 9.5]) 
       
      title(['Shear traction (MPa) vs Slip (m)']) 
      axis square 
       
%      subplot(2,3,6), 
plot(t(1:it),T(1:it),'k',t(1:it),trial(1:it),'r') 
      subplot(2,3,6), plot(t(1:it),T(1:it)/1e6,'LineWidth',2) 
      set(gca,'fontsize',15) 
       xlabel('Time (s)') 
  
      ylim([62 82]) 
      xlim([0 tmax]) 
      title(['Shear Traction (Mpa)']) 
      axis square 
       
      pause(1e-6) 
  
     if movie =='T' 
         
      set(gcf,'Nextplot','replace') 
      F=getframe(gcf); 
      mov = addframe(mov,F); 
  
     end 
     
  end 



   
  if movie =='T' 
     mov = close(mov); 
  end 
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