
Practical for the Advanced Workshop on Earthquake Fault Mechanics: Theory, 
Simulation and Observation (2-14 September 2019, Trieste, Italy) 

Lecture: Dynamic Rupture Simulation Methods 

By Dr. Luis A. Dalguer (luis.dalguer@alumni.ethz.ch), 3Q-Lab GmbH, Switzerland 

Objective: 

The idea of this practical is to the student understand conceptually the implementation, in a 
numerical technique, the mixed boundary condition in an elastodynamic problem coupled to 
a friction law, that is used for earthquake rupture dynamic. You are not going to code. What 
you are going to do is to take a peace of paper and write and develop your own 
implementation. And then, during this workshop or after you can take your implementation to 
code and test it with the problem given at the end of this document. 
Attached to this document is a matlab script file “Friction_1Dwave.m” (and also in appendix) 
and a movie that content the solution of the given (file: dx25.avi). 
 
Brief introduction on dynamic rupture model concept. 
First	lets	define	kinematics	and	dynamics:	Kinematics	 is	the	branch	of	mechanics	that	
deals	 purely	 with	 motion,	 without	 analyzing	 the	 underlying	 forces	 that	 cause	 or	
participate	in	the	motion.	Dynamics	 is	the	branch	of	mechanic	that	deals	directly	with	
force	systems,	and	with	the	energy	balance	that	governs	motion	(Aki	and	Richard,	2002.	
Box.	5.3,	page	129).	

The	 main	 difference	 between	 these	 two	 models	 is	 the	 way	 in	 which	 the	 rupture	
discontinuity	on	the	fault	is	modeled.		The	kinematic	model	associates	the	earthquake	
with	 prescribed	 fault	 slip	 (as	 a	 function	 of	 position	 and	 time)	 without	 taking	 into	
account	the	physics	involved	in	the	rupture.	While	the	dynamic	approach	is	investigates	
the	physical	processes	involved	in	the	fault	rupture,	incorporating	conservation	laws	of	
continuum	mechanics,	constitutive	behavior	of	rocks	under	interface	sliding,	and	state	
of	 stress	 in	 the	crust.	The	 fault	kinematics	 (slip)	 is	determined	dynamically	as	part	of	
the	 solution	 itself,	 by	 solving,	 for	 example,	 the	 elastodynamic	 equation	 coupled	 to	
frictional	siding.		

Dynamic	models	can	be	described	as	a	two-step	process:	(1)	formation	of	shear	crack	
and	(2)	propagation	or	growth	of	the	crack.	The	crack	tip	serves	as	a	stress	concentrator	
(Fig.	1)	due	to	a	driving	force	(for	example,	tectonic	loading).	If	the	stress	at	the	crack	
tip	exceeds	some	critical	value	then	the	crack	grows	unstably	accompanied	by	a	sudden	
slip	and	stress	drops.	Once	a	fault	has	been	formed	its	further	motion	is	controlled	by	
friction	 sliding.	 Friction	 is	 the	 resistance	 to	 motion	 that	 occurs	 when	 a	 body	 slides	
tangentially	to	a	surface	on	which	it	contacts	another	body.	

	

	

	

	

	

Figure	1.	Idealized	model	of	a	crack	rupture	with	stress	concentration	in	the	crack	tip	
and	slip	in	the	friction	sliding	zone.	
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Questions	  related	  to	  the	  physics	  of	  rupture	  

Dynamic	  models	  have	  greater	  potential	  for	  addressing	  science	  questions	  of	  earthquake	  
rupture	  phenomena:	  

-	  What	  are	  the	  physical	  bases	  for	  earthquake	  initiation	  and	  how	  rupture	  nucleates?	  

-	  How	  fast	  does	  the	  rupture	  propagate	  during	  earthquake?	  

-	  Why	  and	  how	  earthquake	  rupture	  stop?	  

	  -	  What	  are	  the	  physical	  basis	  for	  earthquake	  rupturing	  the	  free-surface?	  

	  -	  How	  rupture	  operates	  during	  an	  earthquake?	  

Beside	   these	   questions,	   dynamic	   rupture	  models	   have	   also	   greater	   potential	   to	   study	  
ground	  motion	  dominated	  by	  the	  source,	  for	  example:	  	  

-The	  effects	  of	  surface	  and	  buried	  rupture	  on	  ground	  motion;	  	  

-Directivity	  pulses	  due	  to	  subshear	  and	  supershear	  rupture;	  	  

-The	  physical	  limits	  on	  extreme	  ground	  motion.	  	  

-The	   physical	   description	   of	   low	   and	   high	   frequency	   ground	   motion	   radiated	   from	   the	  
fault.	  

 
 
Split node fault representation 
 
Mathematical Formulation of the problem in an idealized one point fault 
Let assume the fault plane is perpendicular to the z axis and located at z=0. To simplify the 
problem, we will implement the mixed boundary condition in a 1D wave equation, so all the 
fields depend only on z. This reduces to the condition that exactly	   the	   same	   thing	   is	  
happening	  at	  every	  points	  along	  an	  infinitely	  fault	  plane.	  
Let use the velocity-stress form of the elastodynamic equations, in which the velocity v(z,t) 
and shear stress τ(z,t) are the dependent variables:  

 

 

 

 

Where  µ is the shear module and ρ the density. 

Let use the standard staggered grid finite difference for the spatial discretization of the 
equation (Figure 2). The fault normal is in the z direction and located at z=0. 
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Figure 2. Staggered-grid discretization of the 1D elastodynamic equation with grid cells 
(split nodes) adjacent to the fault plane. 

Rupture of the fault leads to a true discontinuity of velocity and displacement at z=0. 
Defining negative and positive sides of the fault (Figure 1). Slip velocity Δv, defined as the 
tangential velocity discontinuity, is the velocity of the positive side relative to negative side at 
z=0 
 
 
 
Which can be integrated to obtain slip. 
 
This velocity discontinuity leads to a stress boundary value problem in which the shear 
traction τf that acts at the frictional interface (fault) during rupture is conditioned to follow a 
constitutive law. The shear traction τf on the fault, that is exerted by the positive side upon 
the negative side, is opposed by an antiparallel shear traction, i.e., the negative side exerts 
traction -τf  on the positive side. The magnitude of τf  is bounded by the frictional strength τc 
 
 
 
 
The frictional strength τc is assumed to be proportional to normal stress  σn 
 
 
 
 
Where µf is the coefficient of friction that can follow any friction law. 
 
What to do? 
 
The best practice to understand how this problem works in a numerical model, is developing 
by yourself the formulation and coding it. Then take a piece of paper, a pencil and first 
develop your own implementation:  
 
1) Approximate the spatial derivatives of equations 1 at the split nodes  
To do that, write separate equations for each side of the fault, taking into account the shear 
traction τf acting at the interface, and its initial static equilibrium value τ0.  Introduce the 
following one-sided difference approximations for τ, applicable to the plus and minus sides 
of the fault, respectively. 
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The time derivatives of equation 1 at time t approximates by second-order central differences: 
 
 
 
Where Δt is the time step. 
 
2) Find the slip and slip velocity considering the boundary conditions 4 and 5. 
To do that, evaluate τf  to satisfy equation (4) and couple with the friction law given by 
equation (5). The most simple way to couple the wave equation with the friction models is 
satisfying the following two conditions: 

 
 
 

 
 
When slip velocity Δv=0 , there is continuity of tangential velocity, i.e, 

 
 

 
Using this condition, find the shear traction (lets call trial traction τ*) required to satisfy  eq. 
10.  
If τ* satisfy eq. (8) then τf =τ*,  if not, then τf =τc . 
 
 
3) Approximate the spatial derivatives of equations 1 and 2 at interior grid points.  
To do that, approximate the derivatives with a second-order spatial difference 
 
 
 
 
 
where φ represents an arbitrary stress τ or velocity component v  

	  

4)	  Approximate	  the	  free-‐surface	  boundary	  condition	  positioning	  the	  free-‐surface	  at	  the	  
stress	  node	  (see	  figure	  2)	  and	  set	  stress	  at	  this	  node	  to	  zero	  

	  

	  

	  

	  

5)	  If	  you	  finished	  it!!,	  then	  you	  can	  code	  it	  in	  any	  programming	  language	  you	  like	  
(fortran,	  matlab,	  c,	  c++,	  etc…).	  If	  you	  do	  not	  finish	  now,	  you	  can	  do	  it	  during	  the	  
conference	  or	  at	  home,	  and	  contact	  to	  me	  if	  you	  have	  problems…	  ;-‐)	  
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For	  µf  (the coefficient of friction in eq. 5) you can use the slip weakening model given as 
follow: 

 

 

 

Where	  Δu	  is	  the	  slip,	  µs	  is	  the	  static	  friction	  coefficient,	  µd	  the	  dynamic	  friction	  
coefficient,	  d0	  the	  critical	  slip	  distance.	  	  

If	  you	  succeed	  in	  1D,	  you	  can	  also	  do	  in	  2D	  and	  3D!!!	  

	  

Test	  problem	  

Lets assume the fault is in the interface of two materials, plus side and minus side of the fault. 
We will let the fault break, i.e., one side of the fault will slide relative to the other side. 
Basically what we are going to solve is:  

1) Evolution in time of slip velocity, slip and stress on the fault 

2) wave radiated from the fault toward the free-surface. Due to different material properties, 
we will observe wave propagating at different speeds 

3) The effect of the free-surface on the radiated wave. 

Model geometry: 
L = 5000m; domain size (m) on each side of the fault 
Δz = 25m;  grid size  
  
Material properties:  
c+ = 4000.0 m/s; wave speed plus side of the fault 
ρ+ = 2670.0kg/m^3; density plus side of the fault 

 
 

 
c- = 2000.0 m/s; wave speed minus side of the fault 
ρ- = 2670.0kg/m^3; density minus side of the fault 

 
 

 
 Friction and initial stress:  
σn= 120e6 Pa; initial normal stress on the fault 
µs =0.677; static friction coefficient 
µd =0.525; dynamic friction coefficient 
τ0 =82.0e6 Pa; initial shear stress 
d0=0.4 m; critical slip distance (m) 
   
Simulation time 
tmax = 1.5*L/c+; 
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µ + = ρ+ (c+ )2     shear module plus side of the fault (Pa)

� 

µ− = ρ−(c−)2     shear module minus side of the fault (Pa)



Time discretization  (CFL=0.5)   
dt = 0.5*Δz/c+; time step 
nt = integer(tmax/dt)+1; Number of time steps 
 
Spatial discretization 
nz = ingeger(L/Δz)+1; Number of grid points   
 

Suggestions for other tests: 

You	  can	  play	  with	  the	  grid	  size	  to	  evaluate	  convergence	  and	  numerical	  oscillations.	  Use	  
the	  same	  data	  above,	  but	  for	  Δz=10m, 50m, 100m 200m 400m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX (matlab script). You can also find in the attached file “Friction_1Dwave.m” 

% Practical for the Advanced Workshop on Earthquake Fault Mechanics:  
% Theory, Simulation and Observation (2-14 September 2019, Trieste, Italy) 
% 
% Numerical implementation of Elastodynamic equation coupled to friction 
law for 
% rupture dynamic problems%  
% solved in a 1D wave equation with staggered grid scheme 
% and slip weakening friction law boundary conditions 
% 
% (the description of the problem is in a pdf file 
"Practical_Rupture_dnamic.pdf" 
% 
%%% By Luis A. Dalguer (luis.dalguer@alumni.ethz.ch)  
%%% 3Q-Lab GmbH, Switzerland 
% 
%============================================================= 
clear; 
% movie? T or F 
movie = 'F'; 
movfile = 'dx25.avi'; % file name for movie 
%model geometry 
L = 5000;% domain size (m) on each size of te fault 
h =  25; % grid spacing (m) 
  
% Material properties: wave speed, density, modulus 
% plus side of the fault 
c_plus = 4000.0; %wave speed (m/s) 
rho_plus = 2670 ; % density (kg/m3) 
mu_plus = rho_plus*c_plus^2; % shear modulus (Pa) 
  
% minus side of the fault 
c_minus = 2000.0; %wave speed (m/s) 
rho_minus = 2670 ; % density (kg/m3) 
mu_minus = rho_minus*c_minus^2; % shear modulus (Pa) 
  
  
% friction parameterization 
sigma= 120e6; %normal stress (Pa) 
mus=0.677; %dynamic friction coefficient 
mud=0.525; %static friction coefficient 
T0=82e6; %initial stress (Pa) 
d0=0.4; %critical slip distance (m) 
  
Ts=sigma*mus; %static frictionnal strength (Pa) 
Td=sigma*mud; %dynamic frictionnal strength (Pa) 
  
% simulation time 
tmax = 1.5*L/max(c_plus, c_minus); 
  
% time discretization (CFL=0.5)   
  dt = 0.5*h/max(c_plus, c_minus); %time step 
  nt = round(tmax/dt)+1; % Number of time steps 
  t = linspace(0,tmax,nt); % time vector 
   
% spatial discretization 



  nz = round(L/h)+1; % Number of grid points   
  zmin = -L; zmax = L; z0=0; 
   
  zv_plus = linspace(z0,zmax,nz); % velocity points plus side 
of the fault   
  zv_minus = linspace(z0,zmin,nz); % velocity points minus 
side of the fault 
   
  zs_plus = zv_plus+0.5*h; % stress points plus side of the 
fault 
  zs_minus = zv_minus-0.5*h; % stress points minus side of the 
fault 
   
   
  % set initial conditions to velocities and stresses 
   
  v_plus = zeros(1,nz); 
  v_minus = zeros(1,nz); 
   
  s_plus = zeros(1,nz); 
  s_minus = zeros(1,nz); 
  
   D=zeros(1,nt); %slip  
   V=zeros(1,nt); % slip rate 
   Ds=0; 
   Vs=0; 
scrsz = get(0,'ScreenSize'); 
%figure('Position',[scrsz(4)/10 scrsz(4)*0.8 scrsz(3)*0.8 
scrsz(4)*0.8]);  
figure('Position',[1 1 scrsz(3)*0.6 scrsz(4)*1.3]);  
%figure('Position',[1 scrsz(4) scrsz(3)*0.8 scrsz(4)*0.8]);  
  
if movie =='T' 
     mov = avifile(movfile); 
  end 
  
  
  
  % loop over time steps   
  for it=1:nt 
     
  %Trial traction. This equation was formulated solving Eq. 
(1) for the two sides of the fault 
  % assuming continuity of the tangential velocity with Eq. 
(6) (7) and (10) ((i.e, for a locked fault)  
   
  trial(it) = T0+ (s_plus(1)*rho_minus+s_minus(1)*rho_plus 
+Vs*h*rho_plus*rho_minus/(2*dt))/(rho_plus+rho_minus); 
     
  T (it)= trial(it); %Assume that traction T is equal to trial 
(the fault is locked) 
       
  % Evaluate friction (Slip weakening friction model); 
  fric=Td; 



  if Ds < d0  
  fric=(d0-Ds)*(Ts-Td)/d0 + Td; %( from eq. (5) and (12) 
  end 
   
  % update T if trial > fric to satisfay eq. (4)  
  if abs(trial(it)) > fric 
      T(it) = sign(trial(it))*fric;  
  end 
   
    % update velocities at t+dt/2 from stresses at t   
    % at interior grid points, with a second-order spatial 
difference     
    % Solving eq(1), using Eq. (7) and (11) 
    v_plus(2:nz) = v_plus(2:nz)+dt*(s_plus(2:nz)-s_plus(1:nz-
1))/(rho_plus*h);       
    v_minus(2:nz) = v_minus(2:nz)+dt*(s_minus(1:nz-1)-
s_minus(2:nz))/(rho_minus*h);  
  
    % at split nodes: %Solving eq(1), with Eq. (7) and (6) 
    v_plus(1) = v_plus(1)+dt*(s_plus(1)-(T(it)-
T0))/(0.5*rho_plus*h);  
    v_minus(1)= v_minus(1)-dt*(s_minus(1)-(T(it)-
T0))/(0.5*rho_minus*h);  
     
    Vs = v_plus(1)-v_minus(1);% slip velocity (Eq.3) 
    V(it) = Vs;% slip velocity 
    Ds=Ds+V(it)*dt; % slip 
    D(it)=Ds; % slip 
  
    % update stresses at t+dt from velocities at t+dt/2  
    % at interior grid points with a second-order spatial 
difference 
    % Solving eq(2), using Eq. (7) (but for stress) and  
Eq.(11) 
    s_plus(1:nz-1) = s_plus(1:nz-1)+dt*mu_plus*(v_plus(2:nz)-
v_plus(1:nz-1))/h; 
    s_minus(1:nz-1) = s_minus(1:nz-
1)+dt*mu_minus*(v_minus(1:nz-1)-v_minus(2:nz))/h; 
     
    % free-surface boundary condition (Eq. 12) 
    s_plus(nz) = 0; 
    s_minus(nz) = 0; 
     
    % plot current solution 
     
      subplot(4,1,1), 
plot(zv_plus,v_plus,'r',zv_minus,v_minus,'b','LineWidth',2) 
      set(gca,'fontsize',15) 
      grid 
      xlabel('z'), %ylabel('v(m/s)') 
      xlim([min(zv_minus) max(zv_plus)]) 
      ylim([-4.0 4.0]) 
      %axis([min(zv_minus), max(zv_plus),min(min(vn)), 
max(max(vn))]) 



      title(['Solution of velocity (m/s) at time t = 
',num2str(t(it),'%6.4f')]) 
       
      subplot(4,1,2), 
plot(zs_plus,s_plus/1e6,'r',zs_minus,s_minus/1e6,'b','LineWidt
h',2) 
      set(gca,'fontsize',15) 
      grid 
      xlabel('z'), %ylabel('stress(MPa)') %, \sigma(x)') 
      xlim([min(zs_minus) max(zs_plus)]) 
      ylim([-22 2]) 
      %axis([min(xv), max(xs),min(min(sn)), max(max(sn))]) 
      title(['Solution of stress change (MPa) at time t = 
',num2str(t(it),'%6.4f')]) 
       
      subplot(2,3,4), plot(t(1:it),V(1:it),'LineWidth',2) 
      set(gca,'fontsize',15) 
      xlabel('Time (s)') 
      ylim([0 6]) 
      xlim([0 tmax]) 
      title(['Slip velocity (m/s)']) 
      axis square 
       
      subplot(2,3,5), plot(D(1:it),T(1:it)/1e6,'LineWidth',2) 
      set(gca,'fontsize',15) 
      xlabel('Slip (m)') 
      ylim([62 82]) 
      xlim([0 9.5]) 
       
      title(['Shear traction (MPa) vs Slip (m)']) 
      axis square 
       
%      subplot(2,3,6), 
plot(t(1:it),T(1:it),'k',t(1:it),trial(1:it),'r') 
      subplot(2,3,6), plot(t(1:it),T(1:it)/1e6,'LineWidth',2) 
      set(gca,'fontsize',15) 
       xlabel('Time (s)') 
  
      ylim([62 82]) 
      xlim([0 tmax]) 
      title(['Shear Traction (Mpa)']) 
      axis square 
       
      pause(1e-6) 
  
     if movie =='T' 
         
      set(gcf,'Nextplot','replace') 
      F=getframe(gcf); 
      mov = addframe(mov,F); 
  
     end 
     
  end 



   
  if movie =='T' 
     mov = close(mov); 
  end 
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