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Abstract. Numerical models of dynamic fault rupture provide a 

convenient framework to investigate the physical processes 

involved in the fault rupture during earthquake and the 

corresponding ground motion. This kind of model usually idealizes 

the earthquake rupture as a dynamically running shear crack on a 

frictional interface embedded in a linearly elastic continuum. This 

idealization has proven to be a useful foundation for analyzing 

natural earthquakes. The problem basically incorporates conservation 

laws of continuum mechanics, constitutive behavior of rocks under 

interface sliding, and state of stress in the crust. The fault kinematics 

(slip), is determined dynamically as part of the solution itself, by 

solving the elastodynamic equation coupled to frictional siding. Here 

we describe the numerical implementation of this problem in finite 

difference solvers, but easily can be adapted to the different classes 

of finite element methods. Two approaches of fault representation 

are formulated, first the so called traction at split-node (TSN) scheme 

in which explicitly incorporates the fault discontinuity at velocity 

(and/or displacement) nodes, and second the inelastic-zone scheme, 

so called stress glut (SG) method, in which approximate the fault-

rupture conditions through inelastic increments to the stress 

components. Finally we develop numerical tests to shortly evaluate 

the numerical models as well as to analyze some rupture phenomena.    
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Introduction 
 

 The study of earthquake rupture using dynamic models has the potential 

for important contributions to understanding different aspects related to the 

earthquake mechanism and near source ground motion. The idealization that 

earthquake ruptures in a shear crack embedded in a linearly elastic 

continuum, propagating spontaneously under pre-defined conditions of initial 

stresses, and sliding under a constitutive friction law, is a useful model for 

analyzing natural earthquake (e.g., [1,2,3,4,5,67,8,9,10,11,12,13]). This 

model leads to nonlinear, mixed boundary value problems. The nonlinearity 

occurs because the respective domains of the kinematic and dynamic 

boundary conditions are time dependent, and these domains have to be 

determined dynamically as part of the solution itself. The theoretical study of 

this problem class is usually possible only with computationally intensive 

numerical methods that solve the elastodynamic equations of motion in the 

continuum, coupling them to additional equations governing frictional sliding 

on the boundary representing the fault surface.  

 Suitable numerical solution techniques for the spontaneous rupture 

problem can be built into elastodynamic methods based upon, for example, 

finite difference (FD), finite element (FE), spectral element (SE), 

Discontinuous Galerking (DG) or boundary integral (BI) methods. Each of 

these numerical methods can be implemented on any of several different grid 

types, and the elastodynamic equations solved to any specified order of 

accuracy. However, recent work by [14,15,16] has shown, at least in the case 

of the most widely used FD-based methods, that solution accuracy is 

controlled principally by the numerical formulation of the jump conditions on 

the fault discontinuity. In that study, as stated in [16], neither grid type nor 

order of spatial differencing in the grid is found to have a significant effect on 

spontaneous-rupture solution accuracy, but the method of approximation of 

the jump conditions has a very large effect. It is likely that a similar 

conclusion will hold for other solution methods such as the different classes 

of FE [16].  

 Here we compile some parts of our series of papers [14,15,16] to 

describe and evaluate the applications of two of the well know fault 

representation methods: 1) the so called traction-at-split-node (TSN) 

methods, and 2) the „„inelastic-zone‟‟ stress glut (SG) method. 

 The TSN Methods represent the fault discontinuity by explicitly 

incorporating discontinuity terms at velocity and/or displacement nodes in the 

grid. It is the most widely used in different type of volumetric numerical 

methods, such as in the different classes of FD (e.g: [1,17,4, 

14,15,16,17,18,19]), In FE methods (e.g. [20,21,22,23,24,25,26]) in SE 
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methods (e.g. 27,28,29]). In the TSN method, interactions between the halves 

of the „„split nodes‟‟ occur exclusively through the tractions (frictional 

resistance and normal traction) acting between them, and they in turn are 

controlled by the jump conditions and a friction law. This method permits a 

partition of the equations of motion into separate parts governing each side of 

the fault surface [14,16]. 

 The SG method, a class of „„inelastic-zone‟‟ models [15], introduced by 

[1,17], represents the fault discontinuity through inelastic increments to stress 

components at a set of stress grid points taken to lie on the fault plane. With 

this type of scheme, the fault surface is indistinguishable from an inelastic 

zone with a thickness given by the spatial step x (or an integral multiple of 

x). The SG methods are very easy to implement in FD codes, as no 

modification to the difference equations is required, only modifications to the 

way stress is calculated from strain rate. However, from the study of [15], in 

which the different classes of fault representation methods in FD schemes 

have been evaluated, the SG method is less accurate than the TSN 

formulation. In a 3D test, as shown by [15], the SG inelastic-zone method 

achieved solutions that are qualitatively meaningful and quantitatively 

reliable to within a few percent, but full convergence is uncertain, and SG 

proved to be less efficient computationally, relative to the TSN approach.  

 For academic purpose, in appendix, we provide a matlab script attached 

to a formulation of the TSN method implemented in a FD 1D elastodynamic 

equation. This matlab script is intended to introduce the reader to a 

conceptual implementation of the TSN in a numerical code. 

 

Theoretical formulation of the problem 
 

 The problem is formulated assuming an isotropic, linearly elastic infinite 

space containing a fault surface ∑ across which the displacement vector may 

have a discontinuity (Figure 1). 

 Assuming that surface ∑ is parallel to the x-y plane, that is, perpendicular 

to the z axis, the linearized elastodynamics equations of the continuous media 

surrounding the fault surface ∑ is represented, in its velocity-stress form, as: 

 

                                                                    (1a) 

 

                                                                     (1b) 
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Figure 1. Schematic representation of an space of volume V containing a fault surface 

∑ with normal unit vector n directed from negative side toward positive side of the 

fault. 

 

         

(1c)

 
 

and the constitutive law (Hooke‟s law) as: 
 

                                                     (2a) 
 

                                                         (2b) 
 

                                                         (2c) 
 

                                                                                (2d) 
 

                                                                              (2e) 
 

                                                                                  (2f) 
 

Parameters  and  are the Lame constants,  is density,  is the 

particle velocity formulated as the time derivative of the displacement u,  is 
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the normal stress and  is the shear stress. The fault surface ∑ has a 

(continuous) unit normal vector n. In our simple problem statement, in which 

no geometrical fault complexities are considered, this unit normal vector is 

always parallel to the axis z and directed toward the positive axis of z. A 

discontinuity in the displacement is permitted across the interface ∑. On ∑ 

we define negative and positive sides of the fault surface such that n (z axis) 

is directed from the former toward the latter. Taken ∑ to be the plane z=0, the 

limiting values of the displacement vector, uv  and uv , is 
 

uv (v,z 0,t) lim
0

uv (v,z ,t),     0                                                       (3) 

 

The superscripts (+) and (-) denote, respectively, the plus-side and minus-side 

of the fault plane (Figure 1); v indicates the vector components x, y tangential 

to the fault or z normal to the fault. Then the slip vector, defined as the 

discontinuity of the vector of tangential displacement of the positive side 

relative to the negative side, is given by (v=x,y) 
 

sv(t) uv (t) uv (t)                                                                                       (4) 
 

and its time derivative (slip rate) is denoted by . The magnitude of the slip 

and slip rate are denoted, respectively, by |s| and . The open fault 

displacement (v=z) is formulated later. 

 The total shear traction vector (T) acting on the fault (z=0) that is 

continuous across ∑ with components Tx xz
0

xz   and Ty yz
0

yz
 

has its magnitude 
 

 T Tx
2 Ty

2                                                                                                (5) 

 

where  and 0  are, respectively, the shear stress change during rupture and 

initial shear stress. 

 As formulated in [14, 15, 16], the jump (rupture) conditions at the 

interface is given by  
 

c T 0                                                                                                     (6a) 
 

                                                                                                           (6b) 
 

Equation (6a) stipulates that the total shear traction T is bounded by a 

nonnegative frictional strength c, and equation (6b) stipulates that any 
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nonzero velocity discontinuity be opposed by an antiparallel traction (i.e., the 

negative side exerts traction -T on the positive side) with magnitude equal to 

the frictional strength c. The frictional strength evolves according to some 

specified friction law  
 

          (7) 
 

that may depends on normal stress ( n), slip (s), slip rate ( ), and other 

mechanical or thermal variables ( 1, 2…). 

 Jump conditions (6a)–(6b), combined with the friction law (7) and 

appropriate initial stress conditions on ∑, provide a model of fault behavior. 

Under these conditions alone can model initial rupture, arrest of sliding and 

reactivation of slip.  

 When normal stress fluctuations are presents, the fault interface may 

undergo separation (fault opening) over portions of the contact surface ∑ if 

there is a transient reduction of the compressive normal stress to zero [30,31]. 

For the sake of completeness, as formulated by [14], we describe an 

extension of the set of jump conditions appropriate to also incorporate fault 

opening due to normal stress fluctuations. We denote the normal component 

of the displacement discontinuity on ∑ by Un (fault opening displacement). 

From Equation 3, for v=z, the fault opening is given by 
 

Un (t) uz (t) uz (t)                                                                                      (8) 

 

The opening conditions, assuming negative normal stress in compression are 
 

n 0,                                                                                      (9a) 
 

Un 0 ,                                                                           (9b) 
 

nUn 0                                                                (9c) 
 

n is the total normal stress acting on the fault that is given by 

n zz
0

zz  where  and 0 are, respectively, the normal stress change 

during rupture and initial normal stress. 

 Equation (9a) bounds the total normal stress by the condition that tensile 

normal stress is not permitted; equation (9b) guarantees no interpenetration; 

and equation (9c) stipulate that loss of contact is permitted only if 

accompanied by zero normal stress. Again, these jump conditions are 

adequate to cover multiple episodes of tensile rupture and crack closure. 
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Traction-at-split-node (TSN) fault representation formulation 
 

 The TSN boundary formulation treats the fault rupture as a true contact 

problem between two surfaces in which the kinematic shear discontinuity 

(slip) as well as the open discontinuity (fault opening) are explicitly modeled.  

This method (for shear discontinuity) was reviewed by [17] and described the 

formulation in detail by [14,15,16] for implementation in finite difference 

schemes. Dalguer and Day [16] adapted it for a fourth-order velocity-stress 

staggered finite difference code.  Here we give a general description of the 

method following [14,15].  

 We position the fault on the x-y plane. As shown in Figure 2, a given 

fault-plane node is split into plus-side and minus-side parts, with respective 

lumped nodal masses M+ and M-. The separate contributions from each side  

 

 
 
Figure 2. Traction at split node (TSN) fault representation method in a partially 

staggered cubic elements. Mass (M±) is split, and separate elastic restoring forces 

( Rv ) act on the two halves. The two halves of a split node interact only through shear 

and normal tractions (Tv) at the interface. 
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of the fault due to deformation of neighboring elements produce elastic 

restoring forces (nodal forces), R+ and R-. At a particular time (t), D‟Alembert‟s 

principle leads to a nodal equilibrium equation of motion for each split node. 

At each step of integration the equation is solved by the central FD scheme to 

estimate the vector components of velocity ( ) and displacement ( uv ) at a 

given node, 
 

   
(10a)

 
 

     (10b) 
 

where v indicates the vector components x, y tangential to the fault or z 

normal to the fault, t is the time step, a is the area of the fault surface 

associated with each split node, Tv is the nodal value of the traction-vector 

components, and Tv
0 is the corresponding initial equilibrium value. The slip 

and slip velocity vectors (for v = x or y) are then 
 

sv(t) uv (t) uv (t)                                                  (11a) 
 

                                                    (11b) 
 

and fault opening displacement and velocity (making v = z) 
 

Un (t) uz (t) uz (t)                                                 (12a) 

 

            

(12b) 
 

To find the slip, slip velocity and fault opening displacement we need to 

solve equation 10 by evaluating Tv as follow. 

 

Evaluation of Tv for shear traction (kinematic fault tangential discontinuity) 
 

 An appropriate methodology is defining a trial traction vector ˜ T v  that 

would be required to enforce continuity of tangential velocity (  

for v equal to x and y) in equation (10a). The expression for ˜ T v  is then 

estimated after few operations in equations 10-11 [14,15,16] 
 

            

(13) 
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where the velocities are evaluated at t- t/2, and the nodal tractions, restoring 

forces, and displacements are evaluated at t. The fault-rupture conditions 

stated in equations (6a,b) are satisfied if the fault-plane traction Tv of equation 

(10a) is 
 

Tv

˜ T v            for ˜ T x
2 ˜ T y

2 1 / 2

c

c

˜ T v

˜ T x
2 ˜ T y

2 1 / 2
for ˜ T x

2 ˜ T y
2 1 / 2

c

                               (14) 

 

for v = x,y. 

 

Evaluation of Tv for normal traction (kinematic fault normal 

discontinuity) 
 

 The same way as before, a trial fault normal traction ˜ T z  (making v=z) 

that would be required to enforce continuity of normal displacement 

( uz uz 0) in (10b) is estimated. After some operations in equations 10 

and 12 the expression of ˜ T z  is given by 

 

     

(15)

 
 

where  is the fault opening velocity estimated at t- t/2 and Un
t  is 

the fault opening displacement estimated at t calculated using eq. (12).  

Assuming negative normal stress in compression and satisfying fault open 

conditions stated in equations (9), the fault normal traction Tz of equation 10a is 
 

Tz

˜ T z for ˜ T z 0

0    for ˜ T z 0

                                                     (16) 

 

The conditions in (16) guarantee no interpenetration and nontensile normal 

stress (i.e. the fault resistant to tensile is zero), consequently loss of contact 

between the two surface of the fault (opening) occurs only if accompanied by 

zero normal stress. This open fault boundary condition is rather simplified 

approximation, since the fault opening may follow a pre- process in which a 

certain amount of tensile stress may be admitted to break the contact between 

the two surfaces of the fault, but this pre-process is ignored here. 
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Stress glut (SG) ‘‘inelastic-zone’’ fault representation formulation 
 

 The SG method has been documented by [1,17] and adapted it to a fourth-

order velocity-stress staggered finite difference scheme by [15].  Considering 

the same grid element features in which the TSN formulation has been 

implemented above (Figure 2), the principal difference between the TSN 

method and the SG formulation is that the latter does not split the nodes neither 

place velocity nodes on the fault, but instead positions the fault to coincide with 

the standard grid points already containing the fault plane traction components 

(Figure 3). The fault discontinuity is not explicitly incorporated, rather it is 

represented through inelastic increments to those traction components. As  

 

 
 
Figure 3. Inelastic-zone Stress glut (SG) fault representation method in a partially 

staggered cubic elements. The shear and normal tractions (Tv) acting on the fault are 

approximated by modifying the shearstress components located along the plane 

coinciding with the fault (labeled “stress plane”). This is equivalent to an inelastic 

zone of one grid-step ( x) thickness. 
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shown in Figure 3, this formulation makes the fault indistinguishable from an 

inelastic zone of thickness x, where x is the dimension of the unit cell 

(assumed equal in all three coordinate directions for simplicity) of the grid. Due 

to this fault configuration, the fault normal discontinuity (fault opening) is also 

not explicit. So for this case, here we do not formulate fault opening boundary 

condition, and we limit our formulation to shear faulting boundary condition. 

 Here we reproduce the formulation stated in [15]. We again take the x-y 

plane as the fault surface. In the split-node method, we introduced extra grid 

variables Tx and Ty on the fault to represent the traction-vector components at 

the split nodes. In the SG method, no extra tractions have to be introduced to 

accommodate the fault; the faultplane traction components are located at the 

standard grid points for the tensor components xz and yz, respectively. 

However, we continue to use Tx and Ty to denote these two shear-traction 

components when they are located on the fault, for notational consistency 

with the split-node discussion. 

 Using the velocity-stress formulation of the equation of motion (Eq. 1 

and 2), lets update nodal stresses assuming central differencing in time by 

using strain rates calculated from nodal velocities at t- t/2. Then, the shear 

stress components at a particular point acting on the fault plane take the form 
 

                                  (17) 
 

where v indicates the vector components x, y tangential to the fault, 

 is  the strain rate and  is the shear modulus. To implement the 

SG method, we modify this stress update scheme when calculating fault-

plane traction components Tv(t) by the addition of an inelastic component 

( ) to the total strain rate: 
 

                                      

(18)
 

 

Then, as proceeded for the TSN method, lets calculate a trial traction, ˜ T v (t) , 

that would be required to enforce zero inelastic strain rate, i.e, 

 

                                                         (19) 
 

Then the fault-plane traction Tv(t)  that satisfy fault-rupture conditions stated 

in equations (6) is calculated using eq. (14). The inelastic strain rate  is 

estimated after some operations between equation (14), (18) and (19) 
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        (20)

 
 

Fault slip is estimated through inelastic increments distributed in an inelastic 

zone of thickness x. Then the total slip rate on the fault is calculated by 

integrating the inelastic strain rate over the spatial step x in the direction 

normal to the fault, which gives 
 

        (21) 
 

from which the slip is then updated by central differencing, 
 

       (22) 

 

Frictional shear strength: Slip weakening friction model 
 

 As described in Eq. (7), the frictional shear strength c in its general form 

evolves according to some specified friction law, and may depend upon 

normal stress, slip, slip velocity, and other mechanical or thermal variables. 

For simplicity, here we use the simple slip-weakening friction model in the 

form given by [1,2]. This friction law, first proposed by [32,33] by analogy to 

cohesive zone models of tensile fracture, is extensively used for shear 

dynamic rupture simulations (e.g.[1,2,4,6,34,35,36,37,8]. 

 The frictional strength c is assumed to be proportional to normal stress 

n (taken negative in compression) 
 

c f n                                                             (23) 

 

The coefficient of friction f depends on the slip path length through the 

linear slip-weakening relationship [2] 
 

f
s ( s d ) s / d0 for s d0

d                        for s d0

                                (24) 

 

where s  and d  are coefficients of static and dynamic friction, respectively, 

d0 is the critical slip-weakening distance, and s  is the magnitude of the slip 

vector. 

 Despite its limitations of the slip weakening model as a model for natural 

earthquakes (as noted in, e.g., [14], this friction law provides a suitable 

starting point for testing numerical methods. Other friction models are out of 

the scope of this chapter, in which interface frictional properties may be 
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better represented by more complicated relationships that account for rate and 

state effects (e.g. [38,39]) and thermal phenomena such as flash heating and 

pore pressure evolution (e.g., [40,41,42,43]).  

 

Cohesive zone 
 

 The cohesive zone (Figure 4a) is the portion of the fault plane behind the 

crack tip where the shear stress decreases from its static value to its dynamic 

value and slip s  satisfies 0 < s < d0 (e.g. [32]). The cohesive model was first 

introduced by [44] in which constant cohesive zone was considered. 

Subsequently [32,33] proposed a cohesive zone model linearly dependent on 

distance to the crack tip; and Andrews [2] proposed a model linearly 

dependent on slip. Basically the models of [2,32,33] are equivalent and well 

know as slip-weakening model as formulated above. In this friction model, 

the cohesive zone, as shown in Figure 4a, examines the crack tip phenomena 

at a level of observation, in which the fracture energy Gc, (Figure 4b) is a 

mesoscopic parameter which contains all the dissipative processes in the 

volume around the crack tip, such as off-fault yielding, damage, micro-

cracking etc. In the event that the normal stress and frictional parameters are 

constant over the entire fault, as will be the case in the test problem 

considered later, this idealized model results in constant fracture energy Gc with  
 

Gc ( s d )d0 / 2                                                        (25)  
 

where s and d are, respectively, the peak shear stress (static yielding stress) 

and dynamic yielding stress, given by 
 

s s n                                                                                                     (26)  

 

 
 
Figure 4. (a) Schematic representation of stress and slip along a shear crack and 

cohesive zone for a slip-weakening crack; (b) Stress-slip relationship of a slip-

weakening model [2] and fracture energy Gc representation. 
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d d n                                                                            (27)  

 

 Note that in this context, the fracture energy Gc is not the surface energy 

defined by Griffith [45] in linear elastic fracture mechanics. 

 In the cohesive zone, shear stress and slip rate vary significantly, and 

proper numerical resolution of those changes is crucial for capturing the 

maximum slip rates and the rupture propagation time and speeds. Therefore 

an estimate of the cohesive zone width to calibrate numerical resolution 

would be useful. A review of some concepts of linear fracture mechanics and 

simple estimates for the cohesive zone size in two-dimensional cases of mode 

II and mode III was presented by [14]. These authors provide two ways to 

estimate the cohesive zone size and calibrate numerical resolution: the zero- 

speed cohesive zone width 0 given by 
 

0
9

32

md0

( s d )
                                                                                        (28) 

 

for m = II, III, respectively mode II and mode III rupture; where II = ;      

III = /(1- ), with  as the Poisson‟s ratio. [14] also approximate solution for 

 at large propagation distances (for mode III crack problems) given by  
 

9

16

d0
2

L 1 for L L0
                                    (29) 

 

where =( 0- d) is the stress drop, 0 the initial stress, L propagation 

distance, and L0 is half of the critical crack length for a 2D crack given by 
 

L0
d0( s d )

2
                                                     (30) 

 

 As pointed out by [14], the two estimates of the cohesive width are 

complementary. The 0 estimate shows that regardless of the background 

stress or rupture propagation distances, the numerical resolution is already 

constrained by the choice of the frictional parameters and elastic bulk 

properties; and it provides a convenient upper bound for the cohesive zone 

size (it is an upper bound in the sense that any nonzero rupture speed would 

shrink this zone even further due to Lorentz contraction [14]). 

 As stated in [14] the  estimate attempts to incorporate the background 

stress level (through the stress drop ) and the reduction of the cohesive 

zone (Lorentz contraction) due to the increasing rupture speed for large 

propagation distances L.  
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 To relate numerical accuracy to the degree to which the cohesive zone is 

resolved, the authors in [14] have expressed the grid-size dependence of the 

solution in terms of the dimensionless ratio Nc. Where Nc is the ratio of the 

width of the cohesive zone, , to the grid interval x.  
 

Nc / x                                                                                    (31) 
 

This ratio provides a non-dimensional characterization of the resolution of a 

given numerical solution. As discussed in [14], even thought Nc  is a local 

measure of resolution, because  varies as the rupture propagates, both the 0 

estimate from (28) and the  estimate (29) should give good initial guidance 

as to what kind of spatial resolution will be needed in dynamic rupture 

propagation problems. However, as pointed out by [14], one should not 

expect a perfect quantitative agreement, as the estimates are derived with a 

number of simplifying assumptions. 

 

Numerical test 
 

SCEC benchmark problem version 3 
 

 Here we present some results collected from the series of papers 

[14,15,16], in which we have solved a three-dimensional (3D) problem of 

spontaneous rupture propagation for a planar fault embedded in a uniform 

infinite elastic isotropic space, using different numerical methods of Finite 

Difference and Boundary Integral (BI). The formulation and parameters of the 

test case correspond to Version 3 of the Southern California Earthquake Center 

(SCEC) benchmark problem [46]. The problem geometry is shown in Figure 5.  

 

 
 
Figure 5. Fault geometry to test dynamic rupture simulation. The square in the center 

is the nucleation area where rupture initiates. 
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Table 1. Stress parameters for the numerical test of spontaneous dynamic rupture 

simulation. 

 

Parameters 
Within Fault Area of 30 km x 15km Outside  

Fault Area Nucleation Outside nucleation 

Initial shear stress ( 0), MPa  

Initial normal stress ( n), MPa  

Static friction coefficient ( s)  

Dynamic friction coefficient ( d)  

Static yielding stress ( s = s n), MPa  

Dynamic yielding stress ( d = d n), MPa 

Dynamic stress drop ( = 0- d), MPa  

Strength excess ( s - 0), MPa  

Critical slip distance, d0 , m 

81.6  

120.0  

0.677 

0.525 

81.24 

63.0  

18.6  

-0.36 

0.40 

70.0  

120.0  

0.677 

0.525 

81.24 

63.0 

7.0  

11.24 

0.40 

70.0 

120.0 

infinite 

0.525 

infinite 

63.0 

7.0 

infinite 

0.40 

 

We take the fault plane to be the x-y plane. The shear pre-stress is aligned with 

the x axis, and the origin of the coordinate system is located in the middle of the 

fault, as shown in Figure 5. The fault and pre-stress geometries are such that the 

x and y axes are axes of symmetry (or antisymmetry) for the fault slip and 

traction components. As a result, the xz plane undergoes purely in-plane 

motion, and the yz plane purely anti-plane motion. 

 Rupture is allowed within a fault area that extends 30 km in the x 

direction and 15 km in the y direction. A homogeneous medium is assumed, 

with a P wave velocity of 6000 m/s, S wave velocity of 3464 m/s, and density 

of 2670 kg/m3. The distributions of the initial stresses and frictional 

parameters on the fault are specified in Table 1.  

 
Rupture nucleation 
 

 The rupture initiation of this kind of dynamic rupture problems is 

artificial and nucleation procedure can affect the rupture propagation (e.g. 

[47]). Here we adopt the criterion of overloading the initial stress at the 

nucleation patch, so rupture can initiates because the initial shear stress in the 

nucleation is set to be slightly (0.44%) higher than the initial static yield 

stress in that patch. Then the rupture propagates spontaneously through the 

fault area, following the linear slip-weakening fracture criterion (25). The 

nucleation size for the problem can be roughly estimated using equation (30) 

that give a value of L0= 1.516km, which is half of the nucleation size. We 

assume that the nucleation shape is a square, so it will give a 3 km x 3 km 

square area centered on the fault, as shown in Figure 5. 
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Estimate of spatial resolution of the numerical model 
 

 As mentioned before, the cohesive zone developed during rupture 

propagation need to be accurately solved to obtain reliable solution of the 

problem. Then before simulation it is convenient to have some estimates of 

the degree of the numerical accuracy by calculating the spatial resolution to 

which the cohesive zone is resolved. For this purpose the approximate 

analytical cohesive zone 0 from (28) and the  of (29) are calculated to 

estimate dimensionless ratio Nc of equation (31) as good initial guidance to 

define the spatial resolution needed for the test problem. Using the data of the 

test problem, we obtain zero-speed cohesive zone 0 = 620m for mode III, 

and 0 = 827m for mode II.  They can be considered as the upper bound of 

our problem. The cohesive zone, , at the maximum propagation distance 

L=7.5km along the mode III is =251m. Notice that the estimate of  for 

mode II cannot be derived analytically, it needs some numerical procedure 

not included in this work [14]. 

 Assuming a grid size x=100m, the Nc value, from Eq. (31), is 6 to 8 for 

the upper bound, and 2.5 for the propagation distance. Those estimates 

indicate that a good spatial resolution for our problem requires x ≤100m. 

The accuracy reached by this resolution will depend on the numerical method 

used to model the fault as well as the numerical technique used, as evaluated 

in [14,15,16]. 

 

Numerical techniques 
 

 The test problem is solved by two numerical techniques:  

 

1) The so-called 3D dynamic fault model (DFM) code in which the TSN 

fault representation method is implemented [4,5,14, 48]. In the DFM the 

spatial difference operators are constructed by specializing trilinear 

elastic finite elements to the Cartesian mesh, approximating integrals by 

one-point quadrature, and diagonalizing the mass matrix (see more 

details of it in [14]). The method approximates temporal derivatives by 

explicit, central differencing in time. On a uniform mesh, the method is 

second-order accurate in space and time. In that case, the differencing 

scheme that results from this procedure is equivalent (away from the 

fault surface) to the second-order partly staggered grid method, which 

has been reviewed by [49] (see also in [50], p. 884, formula 25.3.22]. 

2) The 3D, four-order velocity-stress staggered (VSSG) wave propagation 

code of [51]. In this code we have implemented the SG and TSN fault 

representation method described earlier.  The TSN formulation for the 
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VSSG FD scheme has been proposed by [16], as called by these authors, 

this implementation is referred to as the SGSN (staggered-grid split-

node) method. 
 

Numerical results 
 

 Numerical solutions for the DFM, SGSN and SG fault representations 

methods are briefly qualitatively discussed here. A complete quantitative and 

qualitative assessment of these methods and the solutions for this problem 

has been extensively discussed in our series of papers [14,15,16].  

 The highest grid resolution used for DFM, SGSN and SG methods are 

respectively 50m, 100m and 50m and referred respectively as DFM50, 

SGSN100 and SG50. The rupture arrival time (referred to as „„rupture time‟‟ 

in the following) is a sensitive indicator of numerical precision, because this 

sensitivity reflects the nonlinearity of the problem. Relatively small 

inaccuracies in the calculated stress field can be expected to very 

significantly and affect the timing of rupture breakout from the nucleation 

zone as well as the subsequent rupture velocity. Therefore we have used 

rupture time differences as a primary means to show differences between our 

solutions. Figure 6 shows contours of rupture time for the three methods. The 

computed evolution of the rupture time is virtually identical for the DFM and 

SGSN solutions (Figure 6a), so that the contours for these two cases overlay 

and are nearly indistinguishable. The SG and DFM models (Figure 6b) have 

rupture contours that are very close together right after the initiation of the 

rupture, with differences increasing with the rupture propagation. As 

discussed in [15], rupture-time differences between SG and DFM cannot     

be accounted for by a simple time delay due to differences in  nucleation, but  

  

 
 
Figure 6. Contour plot of the rupture front for the dynamic rupture test problem: (a) 

comparison between DFM50 (grid size x = 50m) and SGSN100 ( x = 100m) 

solutions; (b) comparison between DFM50 and SG50 ( x = 50m) solutions. 
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represent systematic differences in rupture velocity over the entire rupture. 

Cohesive zone development for these methods along both x (inplane) and y 

(antiplane) axes are shown in Figure 7. DFM and SGSN are practically 

identical, the SG solutions produce a rupture with a cohesive-zone width that 

varies with propagation distance in a manner similar to the DFM and SGSN, 

but it is systematically narrower, but the cohesive-zone-width curves for the 

three methods have roughly the same shape. Qualitatively the three solutions 

provide comparable results. A relevant feature of the cohesive development is 

that as the crack velocity increases, the cohesive zone shrink in the direction 

of rupture propagation. This feature involves small-scale processes that need 

to be accurately solved, consequently it leads to numerical challenges in 

which calculations of such numerical simulations pose high demands in terms 

of required memory and processor power (e.g., [14]). 

 A quantitative estimation of the rupture time misfit as a function of grid 

interval for the three methods is shown in Figure 8. The rms misfits estimated 

in our papers [14,15,16] for the SG, DFM and SGSN methods use as 

reference solution the one calculated by the boundary integral (BI)          

method with grid size 100m presented in [14]. The BI     method might    provides 
 

 
 
Figure 7. Cohesive zone evolution during rupture, along both inplane (x axis) and 

antiplane  (y axis) directions for DFM50, SGSN100 and SG50. 
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semianalytical solutions for this problem, therefore it gives a suitable reference 

solution. The misfits of the DFM, SGSN and SG solutions as functions of x, 

or equivalently, as functions of resolution number Nc (Eq. 31) are shown in 

Figure 8. For reference, we also plot the results of the BI from [14].  

 As noted by [14], the DFM solutions follow a remarkably well-defined 

power law in the grid size, with exponent, or convergence rate, of 

approximately 3.  DFM and BI methods share a nearly identical convergence 

rate and that both achieve misfits comparable. As presented by [16] the 

rupture-time differences for SGSN show a bilinear scaling with the grid size. 

The first scaling line corresponds to solutions with x ≤ 0.3 and the second 

line for x > 0.3. The transition between these two scaling lines occurs 

between x = 0.3 and x = 0.4, corresponding to a grid   interval  slightly less  

 

 
 
Figure 8. Misfit in time of rupture, relative to reference solution, shown as a function 

of grid interval x. Misfits are RMS averages over the fault plane for DFM, SGSN 

and SG solutions. All the solutions are relative to BI100m ( x=100m) calculated by 

Day et al 2005. The dashed line shows the (approximate) dependence of time step t 

on x. The upper axis characterizes the calculations by their characteristic Nc values, 

where Nc is median cohesive zone width in the in-plane direction divided by x     

(Eq. 31). 
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than the median cohesive-zone width (L = 0.44 km) (see [16]). In the second 

line, for x > 0.3, the RMS time differences exceed 1.5% and the dependence 

upon x appears to follow a power law of exponent ~3 similar to the DFM 

and BI (see further discussion on it in [14,15,16]). But the SGSN has an 

exceptional performance. Very low misfit of order of ~1% is already 

achieved for x = 0.3, corresponding to Nc ~1.5. In contrast, the SG misfits 

follow a convergence rate with low power law of exponent ~ 1.4, suggesting 

that this method is computational less efficient than the others. 

 A very insightful nature of this kind of dynamic rupture models is the 

rupture evolution that involves: initiation, evolution and stopping of the slip, 

and the evolution of the stress after the slipping ceases. So we reproduce the 

evaluation discussed in [14] of the slip rate and shear stress time history 

profiles along the x axis (in-plane direction) (Figure 9a) and the y axis 

(antiplane direction) (Figure 9b). We show results for the DFM50 only 

presented in [14]. For other solutions, SGSN100 and SG50, the feature 

discussed here are identical. As shown in these figures the pulses associated 

with the P and S waves returning from the borders of the fault are observed in 

the time histories of slip rate and stress. In Figures 9a and 9b we annotate 

these fault-edge-generated pulses. The P waves from the left and right 

borders of the fault traveling along the in-plane direction are denoted by „„P‟‟ 

in Figure 9a. The pulses associated with the edge-generated S wave are 

indicated by „„Si‟‟ and „„Sa,‟‟ with Si corresponding to the pulses coming 

back from the left and right borders of the fault, traveling predominantly 

along the in-plane direction, and Sa corresponding to the pulses coming back 

from the top and bottom borders, traveling predominantly along the antiplane 

direction. In addition to these stopping phases, a late reactivation of slip, after 

its initial arrest, can also be seen in these figures. This feature is associated 

with the Si pulse, and its behavior is explained as follows. The P wave 

coming back from the boundary reduces the shear stress on the fault, causing 

slip to stop, leaving the shear stress somewhat below the dynamic friction 

value (dynamic overshoot). The subsequent Si fault edge pulse has to 

overcome that stress deficit in order to reinitiate slip. As it approaches the 

center of the fault, this pulse becomes weak. This wave experiences 

constructive interference at the center of the fault in which there is an 

encounter between the Si waves coming from the left and right side of the 

fault. As can be seen in the figures of shear stress, the Si pulse crosses the 

center and continues traveling to the other side of the fault, but always below 

the dynamic friction level, and therefore unable to produce further slipping. 

 Note that our solution procedure assumes, for simplicity, that once the 

dynamic frictional strength d is reached at a point on the fault, the     strength will  
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Figure 9. Time history of (top) slip rate and (bottom) shear stress for points along the 

axis of in-plane motion (x axis) (left) and antiplane motion (y axis) (right) for the 

DFM50 solution. The labels P and Si correspond to the P and S waves, respectively, 

generated at the left and right edges of the fault (i.e., propagating predominantly along 

the axis of in-plane motion). The label Sa identifies the S waves generated at the top 

and bottom of the fault (propagating predominantly along the antiplane axis). 

 

not increase to larger values on the timescale of the computation, even if the 

point reaches zero slip velocity. That is, it is assumed that there is no healing 

for times of order of seconds. However, rock interfaces in the lab do exhibit 

healing at rest or small sliding velocities, and a more complete constitutive 

description would include that effect, but it is out of the scope of this work. 

 

Large aspect-ratio fault (L>>W) 
 

 One interesting application of dynamic rupture models is to study 

earthquake rupture in large aspect-ratio strike-slip faults with L>>W, in 

which L and W are respectively the length and width of the fault. It is 
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expected that large earthquakes, such as the 2002 Mw 7.9 Denali and the 

2008 Mw 8.0 Wenchuan earthquake in China, both with fault length about 

300km, rupture the entire seismogenic thickness and are originated in large 

aspect-ratio faults. Therefore, the understanding of the rupture mechanism of 

this kind of fault is very important to address questions such as on why 

rupture extends so long, and what are the conditions to rupture stops before it 

becomes a large event.  

 Strike-slip faulting in a large aspect-ratio fault is dominated by the 

inplane rupture mode (mode II in fracture mechanics). Previous studies, such 

as from [4, 31] shows that in this kind of fault, the rupture is highly affected 

by the width (W). The main mechanism dominated in this kind of fault has 

been already explained in [4], that is, the fault initially ruptures as a crack-

like (a simply-connected patch) around the hypocenter, but subsequently, at a 

time greater than that required for the rupture to cross the fault width, the 

rupture bifurcates into two separate pulses traveling in opposite directions 

due to the stopping phases coming from the top and bottom of the fault (see 

Figure 9 of the evolution of this stopping phases). When this process occurs 

in the bi-material case [31], it evolves interacting with the normal stress 

perturbation (characteristics of bimaterial fault rupture) and under very 

limited conditions it can lead to unilateral rupture (see details of this 

mechanism in [31]). 

 As complementary to the studies described above, here we model this 

kind of rupture problem to investigate the W effect on spontaneous rupture 

propagation in homogeneous strike slip faults. We fix the frictional 

parameters and nucleation rupture to be those of the SCEC benchmark 

problem, version 3, described in the previous section. Then we explore the 

sensitivity of rupture to variability of the fault width (W) in a fault with 

rupture propagation distance along strike of up to 400km. The grid size for 

these calculations is 50m. 

 Our results show that W takes an important role on rupture arresting and 

the generation of steady-state pulse-like rupture due to the arrival of the 

stopping phases (described in Figure 9) at the rupture front. Figures 10a,b,c 

shows respectively the rupture time, final slip and peak-slip rate along the 

inplane axis direction for different fault widths. Rupture is arrested for model 

with W <=5.9. For models larger than this width, the rupture propagation 

becomes self-sustained, increasing the rupture speed with increasing W.  

 Notice that rupture initiation for all the models is identical. All models 

reach the rupture speed limit (Rayleigh waves speeds) early, but then, when 

the rupture reaches the top and bottom of the fault, the ruptures speed, final  
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Figure 10. Rupture time (a), final slip (b) and peak slip rate (c) along the inplane axis 

of a strike slip fault with rupture propagation length of 400km, for different fault 

width (W). The number next to the line specifies the fault width. Figure (d) shows 

slip-rate vs time at each 8km interval along the inplane axis for the model with fault 

width W=8.5km. 

 

slip and peak slip rate are affected. Interesting, at rupture distance L>>W 

when the rupture is self-sustained, rupture propagates with a steady-state velocity 

pulse, i.e., the slip-rate pulse travels without altering its shape and amplitude, 

as shown in Figure 10d. This steady-state mechanism suggests that the 

cohesive zone length in the rupture front remains constant. 

 It is clear that the main mechanism dominating this kind of fault is due to 

the effect of stopping phases, as explained above. When this process occurs 

in a very narrow fault, the S-wave stopping phase reaches the rupture front 

early, and they are loaded with enough energy to arrest the rupture. But when  

the stopping phase reaches the rupture front late, the rupture front is already 

self-sustained, producing a complicated interaction between the stopping 

phase and the pulse dominated in the rupture front; consequently, the pulse 

becomes steady state. 

 From an energetic point of view, initially the fault is loaded with elastic 

energy that is dissipated during rupture propagation. The energy dissipated 
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during rupture increases with L, whereas the available elastic energy is 

proportional to W. For L>>W, the dissipated energy becomes larger than the 

available elastic energy, leading to an eventual arresting of the rupture. 

 

Remarks 
 

 Here we have described the numerical algorithms of two well known 

methods to represent fault discontinuity for spontaneous rupture dynamic 

calculation: the so-called traction at split-node (TSN) scheme and the inelastic-

zone stress glut (SG) method. The main goal of this work is to introduce to the 

reader the conceptual implementation of these methods and its application in a 

simple test problem. For academic purpose, in appendix we provide the TSN 

implementation in a 1D wave equation that includes a matlab script, so the 

reader can follow the formulation and build his/her own code.  

 Advanced papers referred in Introduction are recommended to read for 

applications of these methods for different type of problems. There are recent 

development of fault representation and wave propagation technique not cited 

before, such us those used in Finite Volumes (FV) methods (e.g. [52,53]) and 

high order discontinues Galerkin (DG) methods (e.g. [54,55]). The nature of 

the fault representation in these methods is different than the TSN and SG 

method described here. The VF and DG incorporate formulations of fluxes to 

exchange information between the two surfaces of contact by solving the 

Riemann problem (e.g. [56]). These methods appear to be elegantly powerful 

and suitable to solve problems in extreme complex media and fault 

geometries. Another new generation algorithms emerging recently are the so-

called adaptive mesh refinement formulations (e.g. [57]). Since rupture 

dynamic problems require to solve small scale in space and time during 

rupture propagation, these adaptive mesh algorithms appear to be the future 

application for this kind of problems. 
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Appendix 
 

Numerical implementation of the traction at split-node (TSN) 

fault representation in a 1D Elastodynamic equation for rupture 

dynamic problems 
 

 Let assume the fault plane is perpendicular to the z axis and located at 

z=0. To simplify the problem, we will implement the mixed boundary 

condition in a 1D wave equation, so all the fields depend only on z. This 

reduces to the condition that exactly the same thing is happening at every 

points along an infinitely fault plane. 

 Let use the velocity-stress form of the elastodynamic equations, in which 

the velocity v(z,t) and shear stress (z,t) are the dependent variables:  
 

]1[
1
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zt

v         [A1] 
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z
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t
        [A2] 

 

Where  is the shear module and  the density. 

 Let use the standard staggered grid finite difference for the              

spatial discretization of the equation (Figure A1). The fault normal is in the z 

direction and located at z=0. For simplicity, even un-realistic, we assume the 

existence of free-surface on the plus and minus domain of the discretization 

(see Fig. A1). 

 

 
 
Figure A1. Staggered-grid discretization of the 1D elastodynamic equation with grid 

cells (split nodes) adjacent to the fault plane. 
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Approximation of spatial derivatives of equations A1 at the split nodes  
 

 Write separate equations for each side of the fault, taking into account 

the shear traction T acting at the interface, and its initial static equilibrium 

value T0.  Introduce the following one-sided difference approximations for , 

applicable to the plus and minus sides of the fault, respectively. 
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The time derivatives of equation (A1) at time t approximates by second-order 

central differences 
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where t is the time step. 

 

Approximation of spatial derivatives of equations A1 and A2 at interior 

grid points  
 

 Approximate the derivatives with a second-order spatial difference 
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where  represents an arbitrary stress  or velocity component v  

 

Approximation of free-surface boundary condition 
 

 Positioning the free-surface at the stress node (see figure A1), we satisfy 

the free-surface condition setting stress at this node to be zero 
 

]6[0

0

2/1

2/1

Anz

nz        [A6] 

 

Matlab script 
 

 Combining these equations (A1-A6) and the equations (5), (6), (11)-(15) 

on the fault described in the main text, we have wrote a matlab scripts at the 

end of this appendix. The matlab script is self explanatory. The example test 
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uses data assuming the fault is in the interface of two materials, plus side and 

minus side of the fault. The main feature modeled in this test are: 1) The test 

show evolution in time of slip velocity, slip and stress on the fault; 2) wave 

radiated from the fault toward the free-surface. Due to different material 

properties the test shows wave propagating at different speeds; 3) The effect 

of the free-surface on the radiated wave. 

 

Data used in the matlab script test 
 

Model geometry 
 

L = 5000m; domain size (m) on each side of the fault 
 

z = 25m; grid size  

  

Material properties 

 

c+ = 4000.0 m/s; wave speed plus side of the fault 
 

+ = 2670.0kg/m3; density plus side of the fault 
 

(Pa)fault   theof side plus moduleshear     )( 2c  

 

c- = 2000.0 m/s; wave speed minus side of the fault 
 

- = 2670.0kg/m3; density minus side of the fault 
 

(Pa)fault   theof side minus moduleshear     )( 2c  

 

Friction and initial stress 
 

n= 120e6 Pa; initial normal stress on the fault 
 

s =0.677; static friction coefficient 
 

d =0.525; dynamic friction coefficient 
 

0 =82.0e6 Pa; initial shear stress 
 

d0=0.4 m; critical slip distance (m) 
   
Simulation time 
 

tmax = 1.5*L/c+; 
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Time discretization (CFL=0.5)   

 

dt = 0.5* z/c+; time step 
 

nt = integer(tmax/dt)+1; Number of time steps 

 

Spatial discretization 

 

nz = ingeger(L/ z)+1; Number of grid points   

 

Suggestions for other tests 
  

 You can play with the grid size to evaluate convergence and numerical 

oscillations. Use the s Use the same data above, but for z =10m, 50m, 100m 

200m 400m. 
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