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Problem statement for Seismic Hazard and Risk

Response of structures (engineering systems)

Soil layers

Y

Seismic Hazard Assesment

Path

Seismic Risk/Assessment
(Damage or losses to society)
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A Response spectrum

Design response spectrum

5 sl
s
E €]
o :
O £
O b
O £ | :
< gSDI ..
TU =5% :
g §
O &
()]
o
(Vg
T, T, e T
- ) Penod, T (sec)
Period, T (sec)

SDOF oscillator response
il + 2§ wi+w?u =-ii

Peak ground Motion
(PGA, PGV, PGD)

O
|

e, WH* ‘ l 'l

’ v

-
I

1A g
'\/\, P"”\Nl“n\ y 'l" jfls hm\[\,‘v.ﬁ/
m u | CD
Peak response
Spectral ordinates (PSA, PSV, SD)
- C

(U =Natural frequency of the SDOF system

f =Damping ratio

ﬁ,, ‘a,u =Acceleration, velocity, displacement



Probabilistic Seismic Hazard Assessment (PSHA) 3“1#@!'

Earthquake source
and site characterization
(M7.5 every 250yrs, 0.004 event /years) 4 ?9: HAZARD CURVE CALCULATION
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Role of Ground Motion Models in PSHA 3“14»@@!'

»Seismic hazard results are driven mainly by two
key inputs (and their uncertainty):

|. Rate of earthquakes in areas near the site;
Il. Ground-motion models (GMMs, or GMPEs)

»In many cases the ground-motion models drive
the hazard results

» Current practice of PSHA is usually dominated by
empirical Ground Motion Prediction Equations (GMPEs)
that have been developed most of the time using dataset
from other places except from the site of interest.
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Ground Motion Prediction Equations (GMPEs) and
limitations
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* An ergodic assumption is commonly made in Probabilistic
Seismic Hazard Assessment (PSHA)

* Current practice usually uses empirical GMPEs that are usually
based on worldwide database (there are also for region specific)

 GMPEs Predict only one component of ground motion (e.g. Geo

Mean)

ln(Y) - fsrc(M: ) + fpath(R:M» ) + fsite(VSBO ) +A

Peak ground motion

Distance

1964-2017:

432 empirical GMPEs -> PGA
277 empirical GMPEs ->PSA
(Douglas, 2017,
http://www.gmpe.org.uk)



Evolution of empirical GMPEs

Abrahamson and Young (1992):
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Limitations of empirical GMPEs 3“14@1“

Zone of major interest used for PSHA
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Example of Site-specific PSHA for NPPs

PRP project in Switzerland
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CISN Peak Ground Velocity vs Distance
South Napa Earthquake of 24 Aug 2014, 6.0MW
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Source-dominated ground motion: Physics-based
rupture Models and limitations



Source dominated near-source ground motion 3W
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Source dominated near-source ground motion
Directivity during Mw7.3 1992 Landers Earthquake
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Source dominated near-source ground motion 3W

Super-shear rupture: Velocity pulses transmit large
amplitude motion. Because Shear Mach waves are
emanated from the rupture front
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Supershear rupture speed During Mw7.9 2002 Denali Earthquake

Waveforms at Pump Station 10
(PS10), 3km distance from fault.
Two rupture fronts:

Pulses A, B: from supershear
Pulses C, D: from subshear
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Source dominated near-source ground motion 3%@!}

Pulses causing permanent displacement from surface rupture

Permanent displacement (fling step) are formed from coherent long period velocity

pulses caused mainly by the offset of the ground surface when fault-rupture
extends to the earth surface

1999 Chi-chi (Mw?7.6) 2003 Denali (Mw?7.9) 1992 Landers (Mw?7.3)
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Source dominated near-source ground motion 3[%“@‘31]

Effect of asymmetric geometry of dipping faults:

Example the Mw7.6 1999 Chi-Chi earthquake

» Interaction of reflected waves (coming from the free-surface of the hanging wall side) with the
ongoing rupture propagation causes rapped waves in the hanging wall and rotation of rake angle
enhanced at the edge of the fault trace with considerable strike slip components.

» These source complexities causing hanging wall moving more than the footwall, producing
amplification of the ground motion in the wedge of the hanging wall.

» The rake rotation generates directivity pulses combined with the “fling” pulses caused surface
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Example the Mw7.6 1999 Chi-Chi earthquake

» The rake rotation generates directivity pulses combined with the “fling step” pulses caused
surface rupture 1208 2t 1t
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Source dominated near-source ground motion 3W

Rupture reactivation mechanism:

» Transition from pulse to crack like rupture, stress accumulation due to healing
reactivate rupture (Gabriel et al., 2012)

> Double drop of frictional strength in slip weakening model (Galvez et al., 2016)
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Source dominated near-source ground motion 3%@!‘

Slip reactivation during Mw 9.0 2011 Tohoku
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Slip reactivation: case Mw9.0 2011 Tohoku earthquake
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Surface Vs Subsurface Earthquakes: Buried rupture can propagate
higher frequency ground motion than Surface-rupturing earthquakes
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Source dominated near-source ground motion 3W

Surface Vs Subsurface Earthquakes: Buried rupture can propagate
higher frequency ground motion than Surface-rupturing earthquakes
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Surface Vs Subsurface Earthquakes:
Strike-slip buried rupture may produce supersaturation
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Earthquakes with apparent supersaturation
(Parkfield and Imperial Valley)

Parkfield 2004 M=6.0 Earthquake Imperial Valley 1979 M=6.5 Earthquake
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Earthquake Rupture complexity: Multi-type of ruptures
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Earthauake Rupture complexity
(@a)Dr=15m (b)Dr=20m c)Dr=25m (d)Dr=30m

--— I
m - ——1m

Back—propagatlng rupture may have been observed during the 2016 Kaikoura earthquake
(Archuleta 2019 Ulrich et al., 2019)

along stnke km Song and Dalguer 2017)

0
10
20

along-dip (km)



Source dominated near-source ground motion 3%@

High Frequency (HF) radiation from the source

Raugh-Fault simulations (Shi and Day, 2013): Fault geometry and meshing resolution

planar free surface (x;=0)

self-similar roughness
Anin =80 m

% + nucleation center at (X, X3) = (0 km, 12 km)
X

80 km

B SORD [Ely et al., 2008, 2009, 2010; Shi and Day, 2013]

.......

Hexahedral mesh

Az ~ 20 m

uwy 0t

Highest resolvable frequency fres1 = min(¥5)/100
X3 pH e.g., frest = 15 Hz for min(¥s) = 1500 m/s

X



Source dominated near-source ground motion
High Frequency (HF) radiation from the source

Raugh-Fault simulations (Shi and Day, 2013): Simulations results (ground motion)
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Raugh-Fault simulations (Shi and Day, 2013): Ground motion compared with GMPEs
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Source dominated near-source ground motion
High Frequency (HF) radiation from the source

Fault with small scale branches:
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Source dominated near-source ground motion 3W

High Frequency (HF) radiation from the source

Fault with small scale branches (Ma and Elbanna, 2019) in 2D: Effect on stress

Significant stress heterogeneity caused by the fish bone structure (branches)
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Source dominated near-source ground motion 3%&@

High Frequency (HF) radiation from the source

Fault with small scale branches (Ma and Elbanna, 2019) in 2D: Ground motion
>  HF velocity ground motion is generated by the models with branches

» These HF radiations are emerging from the interference between seismic radiation from the main
and secondary faults.

Velocity Magnitude (m/s)

0.00 0.5 1 1.5  2.00
WHIHIHI‘HHIHW

X(m)

X (m)

Time: 0.08 s



Source dominated near-source ground motion 3W

High Frequency (HF) radiation from the source

Fault with small scale branches (Ma and Elbanna, 2019) in 2D: Ground motion
>  HF velocity ground motion is generated by the models with branches

» These HF radiations are emerging from the interference between seismic radiation from the main

and secondary faults.
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Source dominated near-source ground motion 3%@

High Frequency (HF) radiation from the source

Fault with small scale branches (Ma and Elbanna, 2019) in 2D: Ground motion

HF acceleration up to larger than 40Hz is modeled in 2D.
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Crack-like and Pulse-Like: Implications on source spectra 3W

Crack-Like

Heaton Pulse .;—/: (Heaton, 1990)
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Shear stress

Shear stress

Crack-like and Pulse-Like: Implications on source spectra 3W

Distance

— Slip rate

— Rupture direction

<

-]

Slip rate

Distance

(Wang and Day, 2017)

Stress and slip rate

Pulse-like rupture:
» Frictional Stress develops

healing process

Y VV

* Crack-like rupture:
» Stress remains constant during

slipping
» No healing

» Slip continues until get signals of

stopping faces

» Longer rise time than pulse-like

Slip stops due to healing
Slip duration depends on healing
Shorter rise time than crack-like
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Crack-like and Pulse-Like: Implications on source spectra 3“14&311

Effect on seismic source spectra (far field)

) Slip duration distribution » Crack-like models generate one corner frequency (depends

< ' '— Expanding crack on fault dimensions, i.e. source rupture duration). (most
= —— Growing pulse . . .
g S0 — Steady-state pulse | commonly used source in practice for ground motion
b= Arresting pulse modeling)
-§ ] » Pulse-like rupture models generate double corner frequency
2 30l | (depends on slip rate duration). (double corner frequency
B has been observed in observations, e.g. Atkinson and Silva,
:6;0 1997)
g Brune-type source spectral model:
o 10 /\ _t\ﬁ__’_\' Q, R=Rupture radius
~ L ‘ J . . . Sf) = =S wave velocit
0o 2 4 6 8 10 2 14+ (f/fO" B— !
: . o . c k=Constant
Slip velocity duration time (s) (o=Long period spectral level ~M, B
First corner frequency 15t ~ k —
b) Stacked P-wave spectra c) Stacked S-wave spectra - a Y fc k R
10 10° s d ¢
0 0 econd corner frequency
E : " K
A= = 2nd ~ __
£ 107 £ 10 ¢c =
< < T
e o)
= i = T=Slip velocity duration
E 107 € 10® K=Constant
@) o
Z. Z I i
- - --Brune-type spectral model
10" 10 100 10" 10° 10 Wang and Day, 2017)

Scaled frequency f’ (fR/p) Scaled frequency f’ (fR/p)



Source dominated near-source ground motion

ShakeOut Scenarion
Mw 7 81+O 06 from the southern San' Andreasfault
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Source dominated near-source ground motion 30%@311

SCEC Community Velocity Model

Los Angeles
basin

S wave velocity m/s
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Source dominated near-source ground motion

Kinematic

Dynamic

. 25km Kinematic Rupture Sliprate 0.04 sec

" 16km Dynamic Rupture Sliprate (g0d7) 0.04 sec
16km Dynamic Rupture Sliprate (g2d4) 0.04 sec
16km Dynamic Rupture Sliprate (g3d6) 0.04 sec

L |

16km Dynamic Rupture Sliprate (g4d4) 0.04 sec
16km Dynamic Rupture Sliprate (g5d5) 0.04 sec
16km Dynamic Rupture Sliprate (v1d3) 0.04 sec
:[l ] 7 u - 1

- B 100 km L s%c SDSC

Made by Amit Chourasia (SDSC)

n NSF » USGS career



Source dominated near-source ground motion 3%@311

ShakeOut Ground motion modeling

Made by Amit Chourasia (SDSC)



Physics-based earthquake simulation 3%&&_“)

We can develop a database of synthetic earthquakes To
fill the gaps of lack of data (Dalguer and Mai, 2011)
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Physics-based earthquake simulation 3%@

Developments of Physics-based earthquake models

» Contribute to substantial advances in our understanding of different
aspects related to earthquake mechanism and near-source ground
motion.

» Input data to the model (fault geometry and geological structure)

can be generic or constrained to the site or region of interest




Limitations of Physics-based models 3%@@

» Can be computational expensive. But evolution of modern
computer capabilities is reducing this limitation

» Observational constrains in the source parameterization are
limitted. But assumptions are supported by meaningful physical
foundations.

» For best performance:

 Need best information of source (limitted)

* Need best information available of the geological structure and

site (limitted)



Ergodic and non-ergodic process 3 all

N
Ergodic: The statistical properties of a process can be deduced from a
representative singles sample. It means, any sample of the process is
completely representative of the process as a whole.
This sample could
| represent the process
E L A ] In places
' with no
data, we
i 8 could use
. _~| the data
e \ from other
~ | places

Non-ergodic: Processes for which this property does not hold.



Ergodic and non-ergodic process 3%@31]

Ground Motion Variability of GMPEs

GMPE: In(Y) = forc(M, ...) + fpaen(R M, ... ) + fsite(VS30...) + A
Total variability: A= AB + AW

AB is the between-events variability with standard deviation T

» Earthquake-to-earthquake variability

> Represent average source effects

» Effects of stress drop, slip velocity, rupture speed, geometrical fault
complexity, etc. not captured by the source terms in the GMPE

AW is the within-events variability with standard deviation ¢

» Record-to-record variability

» Represent azimutal variation in source, path and site effects

> Effects of crustal heterogeneities, deeper geologicat structures, basins, near
surface layering, etc, not captured by the path and site terms in the GMPE

AB and AW are uncorrelated, then total standard deviation is

O'=\/T2+¢2

Note: The variability or residuals are the deviation of the observed quantity with
respect to the median predictor model




Ergodic and non-ergodic process :Ground Motion Variability 3WD

Components of AW: §W,, = 6525, + §Amp,s+AP2Pg+ SW2,

— 2 2 2 2
¢ - \/¢SZS + ¢Amp + ¢P2P + ¢O,G 1 i
a - Between-event
N— = = .
Q . . e . . o i “-~\\ Residual for
8S25,: Site-to-site amplification residuals 5 - ~< Earthquake 1
] N
dAmp,,: site amplification residuals (record-to- g 0B, N
. . . ; Q2 I \ L,
record variability of the amplification) R "\,” n-event
. o ) ' Bez‘ween-event~ SN Earthauake 1
8P2P,,: Path-to-path residuals (deviation of I Residualfor > Bi/una ’
observed site-specific region specific) S 0.1 premhquakes N
. . o X
SW_.,: Remaining unexplained path and S within-event BN\ 4
radiation pattern = Residual for |
003 Earthquake 2 +
Components of AB 6B, = §L2L; + 6BY, 0oz | OW g
>
T= \/ Ti, + T8
. . . 0.01 | o Median from Predictive Equation \
S6L2L;: Source Location-to-location residuals [ === Median for Earthquake 1 + 4N
N . . L ==== Median for Earthquake 2 +
(deviation of a single region comperared to the . 9 Data- Earthquake 1 +
global model (effects of stress drop, etc) -+ Data-Fathquake2 4
1 2 10 20 100

§B2;: Remaining residual after removing the :
: - Distance (km)
earthquake location-specific effect. (Strasser et al, 2009. Taken from Al’Atik, et al, 2010)



Ergodic and non-ergodic process: Current issue 3%@

Statistical Aleatory Required recordinggdataset
process
*om

Ergodic $o,6) Pr2p) Pamps Ps2s Global dat- \'a\\\;de\e
To, Tr2L eart:‘o‘ Q;G ((\0 e
\‘e((\e < e(go cones of major
‘GO‘\) G(\‘o . near-source, and
‘\\\"(\e de“ ade of interest
Partially $o,6, Pp-- \\)\ \ \6‘9‘(\ site-specific: at one site from
non-ergodic (\o‘» ode earthquakes located in different
(single-site) ° Y 6\0 N source region .
,30‘\ 3‘9’9 ‘e(e Issue: Few earthquakes with few
\“?6‘5 \ ‘\o(\' oY data
t O 6&\)\ a‘e'a . 0,6» Pamp ®p2p, Ps2s  Path-specific: at one site from
no. 2% Q(\e To Tr2L earthquakes in one location

(sing ’(0‘ 1) Issue: No data for statistic analysis



Ergodic and non-ergodic process: Role Physisc-baw}ﬁiﬂ;]s

Role Physisc-based Models

Statistical Aleatory
process
e
Ergodic ®o,6, Pr2p) Pamp, Pszs (p«\Q ‘\,e(%O Lata +
To, TL2L oée\" \\\‘(\o .ation-based
Q¢ K\ > to fill the gap in
v Q°
X907 O ~rvations
ST
Partially bo,6, Pr- a® \‘ ‘O’&,e. “(\\0 Site-specific observed data +
non-ergodic g‘:a“ e«\e‘\ (‘\o‘-\o Simulations with regional
(single- S|te) \(,N\? N o\‘“d information
Full g(“ \\’& e‘%o ,/Amp ®p2p, Ps2s  Path-specific: Use observed (if
no. "\\‘ (\0“ To Tr2L available) + Simulations with
(sing &\)\ regional information (a model

dominated by simulations)



GMPEs vs Physics-based Rupture Model for SHA 3WD

——__ Soil-surface layers

E?erence Rock
(Vs > 1000m/s)

GMPEs for SHA:

= Usually is ajusted to predict ground motion for reference rock (Vs > 1000m/s).
= Post processing calculations are done to account for local soil response

= Do not capture complexities of source, path and site

= Extrapolate in areas with sparse or not observed data

= Can not predict ground motion different to pass earthquakes

Physics-based models:

= (Caninclude the whole system in a single model (source, path and site)

= Capture complexities of source, path and site

= Extrapolation is supported with physical foundations

=  Ground motion prediction can be different to pass earthquakes, but physically
plausible



The role of physics-based rupture models in PSHA 3WD

» 3-D physics-based dynamic rupture models are by construction site specifics
models, because highly depend on the data of the site of interest. Therefore
they are intrinsically non-ergodic models

» Capture details of the site of interest

» Can complement the empirical models by filling the lack of data to improve the
representation of the site of study and to be consistent with the non-ergodic
process of natural earthquakes.



Current IAEA effort to implement Physics-based model in PSHA 3%@!‘

» |AEA has already recognised this issue and currently is making the effort to implement the
physics-based rupture modelling in practice for PFDHA. But also in PSHA.

» These efforts have been discussed through different international working group
activities, being the most outstanding two international workshops on Best Practices in
Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear
Installations (BestPSHANI) in 2015 and 2018.

» Currently we are writing an IAEA-TECDOC (Technical Document) on Probabilistic Fault
Displacement Hazard Analysis (PFDHA) in Site Evaluation for Existing Nuclear Installations.
In this TECDOC we are explicitly describing the use of physics-based dynamic rupture
models for PFDHA

2"‘1 International Workshop on _B{uﬁ

Best ?ractices in T—_—
tglssh?mll:)tzhggi Lushi . \ - ::i);sr::z-::zz:’::::e:::\:‘r:le ;\: iltillse:f::rlnstallations: -
Changjang W I | 1AEA TECDOC SERIES : A Selrc RSKAAIE oy a2 IAEA TECDOC SERIES
Editare Cadarache, France
T EEs rp—— (In preparation)
PﬁSt . ra(t:]tlce(si IFn It Best Practicas in Physics Probabilistic Fault

ysics-Dased rau Based Fault Rupture Models Displacement Hazard
Ru_ptu[e Models for for Seismic Hazard Analysis in Site
Seismic Hazard Aagessment of Evaluation for
Assessment of Nuclear Nuclear inetalations Existing Nuclear
Installations Installations
g £)1AEA
W Birkhiuser Guer swissnucear  anenerry [ © -
ONBA ooy (18R 2 USNRC




Why physics-based Rupture Models 3“1‘”@3'!

»Need to fill the gaps of empirical GMPEs

» Physics of wave propagation

» Asumptions: physical foundations

» For best performance:

 Need best information of source (faults)

 Need best information available of the geological
structure and site

» ldeal for site-specific seismic hazard assessment

» Intrinsically, they are featured to be used as non-
ergodic ground motion models

» They can be constrained with all the available
information of the area of interest.



Where use physics-based rupture models in practice? 3“1@&'!

» For region (site) — specific studies (as a non-ergodic
model) calibrated with the data from he site of interest.

» For near-source ground motion and large magnitudes to
fill the gaps of GMPEs

» For displacement, velocity and acceleration ground
motions (3 components) at reliable frequency range

» For surface rupture offset (hamed by other communities
as “fault displacement®)

»Need Validation!



Main Requirements to use ah
physics-based synthetics ground motion 3

Seismological aspect
» Validation against past earthquakes (e.g. SCEC validation project)
» Verification against empirical GMPEs models in areas where

GMPEs use large amount of observed data (e.g. SCEC validation
project)

Engineering aspect
» Verification of the response of engineering systems (e.g. Structural
response 1n frequency and time domain).

» Current physics-based models used in practice:
-Kinematic models (to develop GMPEs and in PSHA)
-There has been some attempts to use dynamic models in PSHA
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GMPEs vs Physics-based GM simulation

Yes, but
within

the ergodic
assumption,
4] of course.

( Yes, this is my

expect
something
different from

wag database.

GMPEs
(Global and ergodic)

zone. But do not

GMPEs
(For Zone A
maybe partially non-ergodic)

(Yes, but please
ive me the best

available data
from your source

and 3-D

geological
properties

Physics-based GM model

30, ab

Request 1: Could you make a prediction in zone A for Mw 7 and distance 20km?

PV, = aio-ij

G, =C,,0,V,

(fully non-ergodic)
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GMPEs vs Physics-based GM simulation 3“14»@@

Request 2: Now a prediction in zone A for Mw 7 very near the fault?

This is outside
of my rage of
validity.

| guess | need

to extrapolate...

GMPEs
(Global and ergodic)

GMPEs
(For Zone A
maybe partially non-ergodic)

pv, =00,
o, =C, 6v

jpqa~p 4

(Yes, but please
give me the best|
available data
from your source
and 3-D
geological
properties

Physics-based GM model
(fully non-ergodic) 60



GMPEs vs Physics-based GM simulation

Request 3: Now please a prediction in zone B?

Yes, but

(2] of course.
' and 3-D

geological
properties

ﬁ was not made for
this zone.

You need to make
me some
adjustments...
Host-to-target,
Vs-kappa
corrections, etc...

GMPEs
(For Zone A
maybe partially non-ergodic)

GMPEs
(Global and ergodic)

(Yes, but please

within .
the ergodic give me the best
assumption, available data

from your source

Physics-based GM model
(fully non-ergodic)
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GMPEs vs Physics-based GM simulation

Request 3: Please a prediction in zone B?

/;ou changed
my legs and
arms.

| am nor sure
yet. ’
Need movre

\fdjustments...

GMPEs GMPEs _
(Global and ergodic) (Now almost for Zone B Physics-based GM I.nodel
maybe partially non-ergodic) (fully non-ergodic)



GMPEs vs Physics-based GM simulation 3 ah

Request 3: Please a prediction in zone B?

Yes, | can
make t!!

GMPEs GMPEs

(Global and ergodic) (Now for Zone B
maybe partially non-ergodic)

Physics-based GM model
(fully non-ergodic)



Conclusions 3WD

Empirical models (GMPEs) are insufficient for the prediction of
ground motion for use in magnitude-distance range of most
engineering interest

At present, combination of Empirical GMPES and Physics-based
models are required to full fill the requirement of, ergodic, partially
ergodic and fully non-ergodic ground motion models

Tendency for developments of hybrid GMPEs models (synthetic +
observed)

In the near future, physics-based rupture models may replace
GMPE with fully 3-D physics-based rupture models

For partially non-ergodic and fully non-ergodic models, physics-
based rupture and ground motion modeling are needed for
meaningful Hazard assessment
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