Advanced Workshop on Earthquake Fault Mechanics: Theory, Simulation and Observations ICTP, Trieste, Sept 2-14 2019

Lecture 6: macroscopic source properties Jean Paul Ampuero (IRD/UCA Geoazur)

Overview

Macroscopic source properties constrained by seismology:

- seismic moment
- source time function
- corner frequency
- radiated energy
- \rightarrow stress drop, rupture speed, rupture size

Detailed source parameters

Outputs of dynamic rupture models:

Detailed space-time distribution of slip on the fault

+ seismograms & ground displacements

From ground motion recordings ...

From ground motion recordings to the rupture process

How much did the **fault** slip?

How did it slip? Fast/slow? Smooth/tortuous? Loud/silent?

Fine vs. coarse source parameters

Outputs of dynamic rupture models:

+ seismograms & ground displacements

Macroscopic source parameters:

- Seismic moment
- Seismic moment rate (source time function)
- Rupture size
- Rupture duration
- Average rupture speed

Trade-offs in earthquake source studies

ce slong dip

Source time functions

Global source studies

Ye et al (JGR 2016)

- . 116 M7+ shallow subduction zone thrust earthquakes
- . finite source inversions with teleseismic data, 0.005-0.9 Hz
- . Robust source time functions (STF, moment rate)
- . Uniform method and careful manual analysis

Global source studies

Ye et al (JGR 2016)

- . 116 M7+ shallow subduction zone thrust earthquakes
- . finite source inversions with teleseismic data, 0.005-0.9 Hz
- . Robust source time functions (STF, moment rate)
- . Uniform method and careful manual analysis

2010_Guinea M6.9, 27 km	1996_Samar M7.1, 28 km	2007_SantaCruz M7.2, 10 km	<u>Man</u>	1991_Sulawesi M7.5, 29 km	\mathcal{I}	2009_NewZealand M7.8, 18 km
2008_Honshu M6.9, 23 km	1992_Mindanao	2014_Guerrero M7.2, 23 km	m	2004 jndonasla N7.5, 13 km	m	2010_N Sumatra M7.8, 29 km
1993_NZ M6.9, 25 km	2014_Papua M7.1, 46 km	1994_Kurll M7.2, 36 km	\wedge	1991_Kuril M7.6, 23 km	Juni	2010_Mentawal M7.8, 12 km
1998_Indonesia M6.9, 36 km	1996_Maxico M7.1, 18 km	2010_NSumatra M7.2, 37 km	M	2002_Papua M7.6, 19 km	\sim	1996_Aleuttan M7.9, 22 km
1990_Vanuatu M7.0, 25 km	2004_NZ M7.1, 36 km	2003_Loyalty M7.3, 20 km	M	2001_Peru M7.6, 25 km	Mm	2007_Sumatra M7.9, 34 km
1993_Mindanao M7.0, 52 km	2012_Chile	2010_Vanuatu M7.3, 31 km	\bigwedge	2009_Vanuatu M7.6, 35 km		1995_Kurli M7.9, 26 km
1997_Kermadae M7.0, 32 km	1995_KarmadyC	1990_CostaRica M7.3,17 km	m	1990_Sulawesi M7.6, 22 km		2015_Nepal M7.9, 10 km
2003_Houshu M7.0, 16 km	2007_Vanuatu M7.1, 34 km	2008_Simaulus M7.3, 29 km	\sum	1992_Nicaragua MR.6, 12 km		2013_SantaCruz M7.9, 17 km
2013_Alaska M7.0, 30 km	2011_Vanuatu M7.1, 29 km	2008_Loyalty M7.3, 30 km	\wedge	2012_CostaRica M7.6, 22 km	m	2007_Paru MB.0, 29 km
1996_Sulawesl	2011_Chile M7.1, 24 km	2001_Indonesia M7.3, 22 km	Mm	2014_Nchila M7.7, 32 km	\sim	1995_Mexico MB.0, 16 km
2004_Hokkaldo M7.0, 42 km	1998_Ecuador M7.1, 26 km	2011_Honshu M7.3, 18 km	M	2009_Papua M7.7, 14 km	\sim	1995_Chile MB.0, 37 km
1998_Papua M7.0, 15 km	1996_Kuril M7.1, 36 km	2012_EISalvador M7.3, 10 km	m	1996_Peru M7.7, 34 km	m	2007_Solomon MB.1, 15 km
1999_Papua M7.0, 45 km	1992_California M72,8 km	1995_Maxico M7.3, 20 km	\sim	2006 ² Java Not.7, 12 Jam		2014_Nchile MB.1, 28 km
1993_Kamchatka M7.0, 46 km	2007_Alautian M72, 31 km	2008_Sulawesi M7.3, 31 km	M	1995_Solomon M7.7, 45 km	\sim	2003_Holdcaldo MB.2, 29 km
1997_Sulawesl	2003_NZ M72, 27 km	2009_Papua M7.4, 19 km	M_	1996_Sulawesi M7.7, 20 km	\sim	1996_Indonesta MB.2, 15 km
2003_Alaska M7.0, 29 km	1996_Papua M72, 53 km	2012_Guatemala M7.4, 19 km	m	2007_Chile M7.7, 37 km		2015_Chile MB.2, 20 km
1998_Chile M7.0, 43 km	2005_Honshu M7.2, 43 km	2002_Mindanao M7.5, 28 km	M	1994_Honshu M7.7, 28 km	\sim	2006_Kurli MB.3, 15 km
2008_Kermadec M7.0, 42 km	2002_Vanuatu M7.2, 38 km	2007_Molucca M7.5, 19 km	mm	1992_indonesia M7.7, 17 km		2001_Paru MB.4, 18 km
1999_Papua M7.0, 48 km	2008_Ment awaM M72, 26 km	2012_Maxico M7.5, 20 km	$ \wedge $	2003 "Aleutian M7.7, 25 km	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2007_Sumatra MB.5, 31 km
2001_Molucca	1991_Colombia M72, 21 km	2003_Maxico M7.5, 26 km	m	1997_Karnchatka M7.8, 43 km		2005_Sumatra M8.6, 28 km
1995_Samar M7.0, 26 km	1992_Guinea	2015_Papua MZ.5, 39 km	\mathcal{A}	1994_Java M7.8, 15 km		2010_Chile MB.8, 28 km
2013_Peru M7.0, 40 km	1993_Maxico M72, 29 km	2014_Papua M7.5, 45 km	\sim	2016_Ecuador M7.8, 24 km		2011_Tohoku MD:1, 16 km
2011_Vanuatu	1996_Alautian M72,30 km	2015_Papua MZ_5 29 km		2000_Papua M7.8, 16 km	0 30 60 90	120 150
2007_Montawaj	2015_Nepal M72,14 km	1996_Pani M7.5,14km	\sim	2012 "HaidaGwali M7.8, 9 km	- inne (s)	
0 20 4	0 0 20 40	0 20 40 60 80	0 30 60	90 120 15	50	

STF from deconvolution

seismogram = (Green's function)*(Source Time Function)

 $d_i(t) = G_i(t) * \dot{M}_0(t)$

* means convolution G can be synthetic or empirical Deconvolution: infer $\dot{M}_0(t)$ from $d_i(t)$

SCARDEC (by Martin Vallée, IPGP): real-time STF from teleseismic data large catalog of past events new events posted rapidly on Twitter by @geoscope_ipgp

Teleseismic waves

https://www.iris.edu/hq/inclass/fact-sheet/

Ye et al., 2016, JGR	
Vallée et al., 2011, GJI	
Hayes et al., 2017, EPS	۶L

Vallée et al., 2011, GJI
Hayes et al., 2017, EPSL

Vallée et al., 2011, GJI
Hayes et al., 2017, EPSL

Questions to address:

- What are the common features of earthquakes?
 - Do small and large earthquakes start equal?
 - Are earthquakes self-similar at all magnitudes?
- How are earthquakes different from each other?
 - Is there such a thing as a freak event?
- What do those similarities and differences tell us about earthquake dynamics?

Meier *et al.*, *Science* **357**, 1277–1281 (2017) 22 September 2017

The hidden simplicity of subduction megathrust earthquakes

M.-A. Meier,* J. P. Ampuero, T. H. Heaton

Enabled by global earthquake source products by Lingling Ye (Caltech), Martin Vallée (IPGP) and Gavin Hayes 5USGS)

General patterns of Source Time Functions

General patterns of Source Time Functions

Median STFs have **linear onset**, **same** for all magnitudes Mw>7.2

General patterns of STFs

- . Normalize each STF by its duration
- . Scale them such that they integrate to 1
- . Compute median of normalized STF

On average, all STFs can be scaled to a very simple, quasi-triangular shape

On average (median), all STFs can be scaled to a very simple, quasi-triangular shape

Meier, Ampuero and Heaton (2017)

Implications for moment / duration scaling

Why is linear moment rate growth surprising?

Self-similar model for small earthquakes: Circular rupture with constant stress drop and constant rupture speed

 $\dot{M}_0 \propto t^2$

Ruptures become **elongated** after they break the whole **seismogenic width: moment grows slower than quadratic**

But the linear trend $(M_0 \sim t)$ is observed after ~5 s, before rupture saturates the seismogenic width

Implications for Rupture Growth Scaling

•	Observed STF growth is linear	$STF \propto t^1$
	If rupturing area grows as	$A(t) \propto t^{\alpha}$
	and average slip grows as	$D(t) \propto t^{\beta}$
	Seismic moment	$M_0(t) \propto A(t)D(t) \propto t^{\alpha+\beta}$
	Moment rate exponent	$\eta = \alpha + \beta - 1$
	Since we observe linear growth	$\eta^{obs} \sim 1 \rightarrow \alpha + \beta \sim 2$

. Self-similar pulse or crack $\eta^{ss} = 2 + 1 = 3$

\rightarrow How can we lower the moment rate

.growth? alpha, lower beta, or combination of both?

. Pulse-like rupture with areas of systematic slip deficits?

Intermediate-size event unzipping part of the lower edge of the coupled zone

(Junle Jiang, Caltech)

2015 Mw 7.8 Gorkha, Nepal earthquake

All M>7 subduction earthquakes

All M>7 subduction earthquakes

Fluctuations around the median STF

Fit a function to STFs:

STF residuals

STF fluctuations are multiplicative and Gaussian

 $y_{\rm obs}(t') = y_{\rm fit}(t') \times [1 + \varepsilon(t')], \text{ where } \varepsilon \sim N(0, 0.38^2)$

STF fluctuations are multiplicative, Gaussian and Brownian

Summary of observed STF characteristics, Mw>7

- All STFs can be scaled to a common, quasi-triangular shape
- Onsets are linear and the same for all
- Fluctuations are multiplicative, Gaussian and Brownian

CONCLUSIONS

Today we have **enough data** to **uncover general patterns of earthquake rupture** Focusing on **temporal evolution** facilitates testing conceptual rupture models

A few things are certain

- : Large earthquakes are small earthquakes that did not stop (all earthquakes start the same)
- . Earthquakes have large variability, but on average they follow a **simple pattern**
- . The pattern deviates from standard models after few seconds
- . Rupture evolution is weakly predictable

More questions than answers

- : Physical origin of the pattern?
- . What dynamical models can explain the linear STF growth?
- . What causes break of self-similarity at ~1s?
- Transition to **elongated ruptures** at the bottom of seismogenic zone?

What to do next?

- Analysis of strike-slip ruptures
- Source studies with uncertainty quantification
- Develop methods for systematic analysis across the magnitude range of scaling transition from M6 to M8+

 \rightarrow break of self-similarity, scaling of rupture aspect ratio

• Develop dynamic rupture models consistent with these observations

Corner frequency

Earthquake spectra

seismogram = (Green's function)*(Source Time Function)

 $d(t) = G(t) * \dot{M}_0(t)$

In the far-field, $G(t) \propto \delta(t - r/c)$

 $d(t) \propto \dot{M}_0(t-r/c)$

- → Far-field displacements are proportional to Source Time Function
- → Far-field spectrum d(f) proportional to moment rate spectrum $\dot{M}_0(f)$

Earthquake spectra

 \rightarrow Far-field spectrum d(f) proportional to moment rate spectrum $\dot{M}_0(f)$

ω^2 model of earthquake spectrum

One corner frequency, f_c , that separates flat spectrum at low-f and $1/\omega^2$ at high-f:

At high frequencies ($f \gg f_c$):

$$\dot{M}_0(f)\approx M_0f_c^2/f^2$$

 $d(f) \propto \dot{M}_0(f) \rightarrow a(f) \propto f^2 \dot{M}_0(f) \approx M_0 f_c^2$

Attenuation vs corner frequency

Attenuation (low Q) multiplies the spectrum by $\exp(-\pi f r/cQ)$ It reduces the apparent corner frequency

Trade-off between attenuation and corner frequency

Lior and Ziv (2018)

Self-similar source model

Corner frequency $f_c \sim 1/(\text{source duration})$

$$\Rightarrow \quad f_c \sim M_0^{-1/3}$$

Circular rupture model

Circular rupture, constant rupture speed, final radius R. Only one characteristic time-scale: source duration

 $T \approx 2R/v_r$

• corner frequency

$$f_c = \frac{kv_r}{R} \approx 1/T$$

where k is a factor of order 1 that depends mildly on rupture speed (k = 0.44 for $v_r = 0.9c_s$).

• relation between stress drop and slip from elasticity theory:

$$\Delta \sigma = \frac{7\pi}{16} \ \mu \frac{D}{R}$$

• definition of seismic moment $M_0 = \mu D \pi r^2$

→ Corner frequency scaling
$$f_c = k v_r \left(\frac{16}{7} \frac{\Delta \sigma}{M_0}\right)^{1/3}$$

 \rightarrow estimate of stress drop:

$$\Delta \sigma = \frac{7}{16} \left(\frac{f_c}{k v_r} \right)^3 M_0$$

Rectangular rupture model

Rupture length L \gg width W.

- Rupture duration controlled by the <u>longest</u> rupture dimension: $f_c \sim 1/T$ with $T = L/v_r$. ٠
- Elastic stiffness controlled by the <u>shortest</u> rupture dimension: $\Delta \tau \sim \frac{\mu}{W} D$ ٠
- Seismic moment: $M_0 = \mu DWL \sim \Delta \tau W^2 L$ ٠

→ corner frequency scaling f_c ~ ΔτW²v_r×M₀⁻¹
→ estimate of stress drop Δτ ~ M₀f_c/W²v_r

A dependence of rupture aspect ratio on magnitude can break self-similarity and affect estimates of stress drop.

Spectra with two corner frequencies

Two time scales: Total rupture duration $T_{rup} = L/v_r$ Local slip duration, rise time T_{ris} → two corner frequencies: $f_1 = 1/T_{rup}$ $f_2 = 1/T_{ris}$

Radiated energy

Radiated energy

Energy radiated to the far-field:

 $E \propto \int \dot{u}(t)^2 dt$

```
E \propto \int \dot{u}(f)^2 df
```

... integrated over a far-field sphere

Observational challenges:

- attenuation
- incomplete coverage of take-off angles
- interference between depth phases

Radiated energy

Energy radiated to the far-field: $E \propto \int \dot{u}^2 dt \propto \dot{u}^2 T$

Self-similar model: $\Delta \sigma$ and v_r do not depend on earthquake size R

$$M_0 \propto R^3$$
$$T \propto R$$

Far-field displacement and veocity:

$$\begin{split} & u \propto \dot{M}_0 \sim M_0 / T \propto R^2 \propto M_0^{2/3} \\ & \dot{u} \propto \ddot{M}_0 \sim M_0 / T^2 \propto R \propto M_0^{1/3} \end{split}$$

→ Energy radiated to the far-field: $E \propto \dot{u}^2 T \propto M_0$

 $\log_{10} E = \log_{10} M_0 + f(\Delta \tau, v_r) + \cdots$

Earthquake energy balance

Potential energy change = fracture energy + heat + radiated energy

$$\Delta W = G_c A + H + E_r$$

Per unit of fault surface:

 $\frac{1}{2}(\tau_0 + \tau_f)D = G_c + \tau_d D + E_r/A$

$$G_c = \frac{1}{2} \left(\tau_0 - \tau_f \right) D - \frac{E_r}{A} + \left(\tau_f - \tau_d \right) D$$

Seismological constraints

Gc inferred from radiated energy, seismic moment and corner frequency, or from finite source inversion

Seismological constraints

Gc inferred from radiated energy, seismic moment and corner frequency, or from finite source inversion

Consistent with **thermal pressurization weakening** $\tau = \mu(\sigma - P)$

Velocity-and-slip-dependent friction law:

$$\mu(V,\delta) \sim \mu_{FH} \left(\frac{V}{V_c}\right) \, \mu_{UA} \left(\frac{\delta}{\delta_c}\right) \mu_{HD} \left(\frac{\delta}{\delta_d}\right)$$

Flash heating:

$$\mu_{FH}(x) = \mu_d + \frac{(\mu_s - \mu_d)}{1 + x}$$

Undrained-adiabatic thermal pressurization: $\mu_{UA}(x) = \exp(-x)$

Diffusion-dominated thermal pressurization: $\mu_{HD}(x) = 1/(1 + x^{1/3})$

Overview

Macroscopic source properties constrained by seismology:

- seismic moment
- source time function
- corner frequency
- radiated energy
- \rightarrow stress drop, rupture speed, rupture size