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Inferring earthquake source models is an essential ingredient in efforts to understand the physics of seismic rupture
phenomena and the relationship of an earthquake with its tectonic and geodynamic environment. The earthquake source
model is not only an end into itself but serves as input into a variety of other related applications such as earthquake energy
budget, Coulomb stress calculations, seismic hazard, PGV estimates...
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However, source inversion algorithms usually do not include realistic error analyses and their results are generally not
accompanied by reliable estimates of uncertainty. These limitations reduce the utility of inferred rupture models and
associated by-products. Furthermore, uncertainty in both data and model predictions can cause current source
models to be significantly biased due to overfitting of seismic and geodetic observations (Duputel et al. 2014).



Overfit: to obtain an excessively good fit to the data considering the non-negligible
errors. This meaning differs from the typical usage in statistics where overfit implies that
a model has been overparametrized and fits noise as well as signal.



Introduction

Given a kinematic slip model and a local seismic velocity structure, it is straightforward to
calculate the resulting ground motions deterministically.
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The reliability of any source inversion depends on many factors including the size and complexity
of the event, the amount and quality of data, the way in which data sample the source region
and, while usually disregarded, uncertainties in our forward models (i.e. our model predictions).



Introduction

We distinguish two sources of

uncertainty:

the first class of error is induced by
imperfect measurements and is often
referred to as observational error.

The second source of uncertainty is
generally neglected and corresponds to
the prediction error, that is the
uncertainty due to imperfect forward
modelling.
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Introduction

The prediction error is due to imperfect forward modelling, also referred to as epistemic error. For
earthquake source modelling problems, this component includes but is not limited to, lack of fidelity
in the fault geometry, oversimplifications of the mechanical earth model and approximations made
when calculating the Earth’s response to an applied force (theory error).
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Example: during the forward modeling we have to assume some Earth structure (seismic
velocities, density and anelastic attenuation) that is necessarily inaccurate (even if we use 1D
models or 3D models).



LITERATURE —

v’ Recently Yagi and Fukahata (2011) presented a method to include uncertainties in Green
functions (theory errors) into an inversion for earthquake rupture behavior, by using a time-

domain approach. They were possibly the first investigators to try to quantify the variation of
the ground motions caused by errors in the Green’s function.

v’ Theory errors are also included in Bayesian inversion (Duputel et al (2012), Duputel et al.

(2014), Minson et al (2013), Ragon et al. (2018)), by using a time-domain approach, through
theoretical considerations.
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SUMMARY

In principle, we can never know the true Green’s function, which is a major error source in
seismic waveform inversion. So far, many studies have devoted their efforts to obtain a Green’s
function as precise as possible. In this study, we propose a new strategy to cope with this
problem. That is to say, we introduce uncertainty of Green’s function into waveform inversion
analyses. Due to the propagation law of errors, the uncertainty of Green’s function results in a
data covariance matrix with significant off-diagonal components, which naturally reduce the
weight of observed data in later phases. Because the data covariance matrix depends on the
model parameters that express slip distribution, the inverse problem to be solved becomes non-
linear. Applying the developed inverse method to the teleseismic P-wave data of the 2006 Java,
Indonesia, tsunami earthquake, we obtained a reasonable slip-rate distribution and moment-rate
function without the non-negative slip constraint. The solution was independent of the initial
values of the model parameters. If we neglect the modelling errors due to Green’s function
as in the conventional formulation, the total slip distribution is much rougher with significant
opposite slip components, whereas the moment-rate function is much smoother. If we use a
stronger smoothing constraint, more plausible slip distribution can be obtained, but then the
moment-rate function becomes even smoother. By comparing the observed waveforms with
the synthetic waveforms, we found that high-frequency components were well reproduced only
by the new formulation. The modelling errors are essentially important in waveform inversion
analyses, although they have been commonly neglected.



Literature Yagi and Fukuhata 2011

Yagi and Fukuhata 2011 introduce uncertainty of Green’s function into waveform
inversion analyses. They proposed a stochastic forward model (in terms of probability
density function) based on adding Gaussian noise to the unattenuated 1-D teleseismic
Green’s functions. This Gaussian noise is characterized by a covariance matrix that is
partially specified apriori. Due to the propagation law of errors, the uncertainty of
Green’s function results in a data covariance matrix with significant off-diagonal
components whose elements are proportional to the square of the maximum value of
theoretical Green’s functions.

They apply this new methodology to the 2006 July 17 Java tsunami earthquake



Overfit: to obtain an excessively good fit to the data considering the non-negligible
errors. This meaning differs from the typical usage in statistics where overfit implies that
a model has been overparametrized and fits noise as well as signal.

Covariance: is a measure of the joint variability of two random variables.

Covariance matrix: is a matrix whose element in the j, j position is

the covariance between the i-th and j-th elements of a random vector. Each element
on the principal diagonal of the covariance matrix is the variance of one of the
random variables

Kx x; = cov|Xi, X;| = E[(X; — E[Xi])(X; — E[Xj])]
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SUMMARY

This study lays the groundwork for a new generation of earthquake source models based on
a general formalism that rigorously quantifies and incorporates the impact of uncertainties in
fault slip inverse problems. We distinguish two sources of uncertainty when considering the
discrepancy between data and forward model predictions. The first class of error is induced
by imperfect measurements and is often referred to as observational error. The second source
of uncertainty is generally neglected and corresponds to the prediction error, that is the
uncertainty due to imperfect forward modelling. Yet the prediction error can be shown to
scale approximately with the size of earthquakes and thus can dwarf the observational error,
particularly for large events. Both sources of uncertainty can be formulated using the misfit
covariance matrix, C, , which combines a covariance matrix for observation errors, Cy and a
covariance matrix for prediction errors, C,,, associated with inaccurate model predictions. We
develop a physically based stochastic forward model to treat the model prediction uncertainty
and show how C; can be constructed to explicitly account for some of the inaccuracies
in the earth model. Based on a first-order perturbation approach, our formalism relates C,
to uncertainties on the elastic parameters of different regions (e.g. crust, mantle, etc.). We
demonstrate the importance of including C;, using a simple example of an infinite strike-slip
fault in the quasi-static approximation. In this toy model, we treat only uncertainties in the
1-D depth distribution of the shear modulus. We discuss how this can be extended to general
3-D cases and applied to other parameters (e.g. fault geometry) using our formalism for C,.
The improved modelling of C, is expected to lead to more reliable images of the earthquake
rupture, that are more resistant to overfitting of data and include more realistic estimates of
uncertainty on inferred model parameters.




Literature Duputel et al (2014)

Duputel et la 2014 provide a general formalism to explicitly quantify the impact of uncertainties in
forward models and to rigorously incorporate such uncertainties in source inversion problems. They
use a stochastic forward modelling approach that permits to describe a probability distribution of
predictions for a given source model, contrary to a deterministic approach that provides a single set
of predictions.

ASSUMPTION




Overfit: to obtain an excessively good fit to the data considering the non-negligible
errors. This meaning differs from the typical usage in statistics where overfit implies that

a model has been overparametrized and fits noise as well as signal.
Covariance: is a measure of the joint variability of two random variables.

Probability density function (PDF): is a function whose value at any given sample in
the sample space can be interpreted as providing a relative likelihood that the value of

the random variable would equal that sample.
The PDF is used to specify the probability of the random variable falling within a

particular range of values.




Literature Duputel et al (2014)

Duputel et la 2014 quantify the impact of uncertainties (due to both observational error and
prediction error) and incorporate such uncertainties in source inversion problems.

C)(=Cd+Cp

ASSUMPTION

Both sources of uncertainty can be formulated by use the misfit covariance matrix, Cx , which
combines a covariance matrix for observation errors, C4 and a covariance matrix for prediction errors,
C,, associated with inaccurate model predictions.

INVERSION PROCEDURE

They use a Bayesian inversion procedure in which they combine prior informations to
construct a posterior distribution for source model parameters.

x(m) = = [dops — g(¥, m)]" - C" - [dops — g(¥, m)]. P(dops|m) = n(m)exp ( — x(m)).

by defining a least-squares misfit function the likelihood function depends on C,

N | —



Literature Duputel et al (2014)

Cq observational error  g=g.g*

The probability density function (PDF) for the observational error (stochastic model)
is assumed to be a Gaussian with Covariance matrix C4 and mean zero.

A common model is to take independent observational errors (i.e. diagonal Cd).
However, for observations like InSAR, off-diagonal components should be included in Cd
to allow correlation of measurement errors between neighboring data samples.

Co prediction error €e=d—dpyreq

The PDF for the prediction error (stochastic forward model) describes the uncertainty
in the actual physical quantity d given d,,.4 and is assumed to be Gaussian with
Covariance matrix C, and mean zero. This error scales approximately with the size of
earthquakes and, for large events, the contribution of Cy is thus frequently negligible
compared to C,.




Literature Duputel et al (2014)

Why does C, error scale approximately with the size of earthquakes?

g(V,m) is a deterministic model for a source model m and ¥ represents a set
of uncertain properties (e.g., rigidity, density, fault geometry...):

€ =d—dprea = d_g((p'm)

where W represents the most plausible value a priori (erroneous).

If we consider the linear formulation of the forward problem g(‘¥,m)=G('Y) m

Therefore we can write:

e=d—dyreq =g@,m) —g(P,m)=[c¥)—G(P)]-m



How do they design a prediction covariance matrix Cp?

If the uncertainty is due to a specific parameter WV (like the rigidity) after many
equations Duputel et al. 2014 found that:

Cp=Kq;'C\p'K£,

where Cy represents the covariance matrix of that parameter and Ky represents a
kernel (that is the partial derivative of the model respect to that parameter).
Duputel et al. 2014 assume that the prior probability density describing the
uncertainty of the nameters ¥ follows a Gaussian distribution and its covariance

matrix Cy is: ~ ~
Cy = / (W — W) (W — W) p(W) dW.

This covariance matrix is built throught a large number (> 1000) of stochastic earth
model realizations.



Literature Duputel et al (2014)

How to use these information on the uncertainties during the
kinematic rupture inversions?
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Literature Duputel et al (2014)

How to use these information on the uncertainties during the

kinematic rupture inversions?

Marginal posterior probability densities for all
possible pairs of fault patches. Numbers
increase as a function of depth.

These PDF show very narrow peaks at
large depth that are clearly shifted with
respect to the target slip values. If Cp is
included, they obtain much broader
posterior distributions centred around a
mean model that is in agreement with
the target slip model
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How to use these information on the uncertainties during the
kinematic rupture inversions?

They recognize that their prediction covariance matrix C, should also depend on the
earthquake source model and is not just a constant matrix, that is, changing the magnitude
and distribution of fault slip will change C, for a given elastic model.

For practical implementation, there are different ways of dealing with the dependence of Cp
upon the source model m. They test two ways:

1) They calculate C, (myior)using an apriori source model, my;,,, such as a preliminary finite-
fault model and assume that Cp is constant.

2) They propose to update the prediction covariance iteratively during the source inversion
process.



LITERATURE —

v’ Recently Yagi and Fukahata (2011) presented a method to include uncertainties in
Green functions (theory errors) into an inversion for earthquake rupture behavior,
by using a time-domain approach. They were possibly the first investigators to try
to quantify the variation of the ground motions caused by errors in the Green’s
function.

v’ Theory errors are also included in Bayesian inversion (Duputel et al (2012), Minson
et al (2014), Ragon et al. (2018)) through theoretical considerations.

‘ None of the investigators actually measured Green’s function errors. \




GOAL

GOAL:

We want to compute the impact of uncertainties of crustal model and
we derive the covariance matrix by measuring Green'’s function errors.



OUTLINES -

1) Present an equation of ground velocity that includes the Green function errors (frequency domain);
2) Derive the expected variance y2 caused by Green function errors for a large earthquake;

3) Compute the Green function errors for a test case (L'Aquila region);

4) Compare these errors with the misfit of the best model for the 2009 L'Aquila event, Mw 6.1;

5) General discussion on source variabilities and green functions errors;

6) Future applications.
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Summary

Numerical simulations of earthquake ground motions are used both to
anticipate the effects of hypothetical earthquakes by forward simulation and
to infer the behavior of the real earthquake source ruptures by inversion of
recorded ground motions. In either application it is necessary to assume some
Earth structure that is necessarily inaccurate and to use a computational
method that is also inaccurate for simulating the wave field Green's functions.
We refer to these two sources of error as ‘propagation inaccuracies,” which



Green function errors

A major problem is that we do not know the seismic velocity structure perfectly and
our methods for calculating traction Green’s functions are inaccurate.

Let the true tractions on a fault at point caused by a point force in the j-direction at the observer at y be g(j) (x,a);y)

=)

Let its numerical approximation based on an inaccurate velocity structure be g (X,w;y)
Let its error be 5g(j) (x,w;y)
so we have... g(j)(x,a);y) _ g(f)(x, o;y)+ 5g(j)(x,a);y)

Similarly, the relation between the true slip velocity, the assumed and the variation in slip velocity can be
written:

s(x,w) =s(x,0)+55(x, )



Green function errors

Ground velocity in frequency domain:
d;(@y)=v;(@.y)+n (o).
Noise-free Ground velocity:

v, (o,y)= j s(x,0) gl (x,w;y)dA

js g(j)a’A+ j5s g(j)dA+ js

v ((D ) is the Fourier Transform of
J ’ the j component of ground
velocity at location y

s(x.0)
@ is the Fourier Transform

of the slip velocity
vector at location x

s5gdA+ | 5s og"dA

xe 4



Green function errors

Ground velocity in frequency domain

v (o,y)=[s gVda+ [os gVda+ [s sgVda+ [os sgVda

xeA xeA xeAd xeAd

/ , I SV
S v]g J

is the ground velocity caused
i<temic variability in by the interaction of dg and Js.
epistemic variabiiity | it might not be negligible

the ground veIogty depending on the amplitudes
because errors in the
of &s and do.

geologic structure.

oV}
is @ measure of the
aleatory variability in the
ground velocity caused
by rupture source
variability.

is a measure of the

These terms show how variations in the rupture model and errors in the Green’s functions
contribute to the total motion.



Green function errors

Ground velocity in frequency domain

v (o,y)=[s gVda+ [os gVda+ [s sgVda+ [ s sgVda

xeA xeA xeAd xeAd

L

S
5Vj ove
ove !

J

| will show you how errors in the Green’s functions contribute to the total motion



Green function errors

The variation in ground velocity caused by errors in our Green’s function is

We compute the variance of y2 of this term &9 that can be related to the statistics of
the Green’s function error. This variance is a function of frequency, component and
observation location.



Green function errors

Ground velocity in frequency domain:

d,(o,y)= Is [g(j) +5g(j)}dA+nj(a),y).

xed

2
The slip velocity function s(x,0)= Zaq (x)e, T(x,0) exp(—ia)t(x))

By using the multidimensional delta method,
Considering the function u(®) (Papanicolaou, 2016)

q=1

|A Taylor expansion about X = p gives

u(X) = u(w)+(Vu()) (X-n)

If the function has continuous partial derivatives, then
\/ﬁ(u (X) -u (p))L)N(O, 7 )
where N (0, 72 )is the normal distribution with zero mean and variance 72, which is given by

72 =(Vu(p)) CVu(p).

Covariance matrix is a P x P matrix with elements

€, ={(x07 1) -




Green function errors

dj (w) - Z aqkT(w) e [quj (a)) + 5quj (a)) |

By using the multidimensional delta method, the variance of u(w) (Papanicolaou, 2016)

where the dagger connotes complex-conjugate transpose.

T

ou, Ou; ou . -

V“f:[ac;j 3G, ac;j} =[4 4, 4]
2) P

and 1

the covariance is: C .= E|:(G . — Gpj )* (Grj — Grj ):| = E|:§G;5Grj]

prj 2
A, (0) =a,T(w) B(w)e™

A is the source term filtered with operator B(w)

y; =

:
Vuj Cj Vuj




Green function errors

2 _ T
7 —Vuj Cj Vuj

Then for a particular source §, the variance is:

j I x,0)C’/ (x,x,0)s(xX,») dx dx’

xeAdx'eAd

Covariance of the Green’s function errors between point x and y

5g3 (x)

Cj(x,y,a))=E[5gj*(X»0)) T sl (y’w)}_En&g{:(X)} [5g1j (y) d¢gd (Y)]]



Green function errors

The general form is:

= [ J[500 s 1) e

xcAx'cA

Cj(x,x’,a)):E|:5gl(j)( x)dg ])(X) 5g (X)5g (X ):|
6g()( )5gj)(x) g/ (X)5g (x)

We can simplify for the common case that the rake in an earthquake rupture is primarily
unidirectional. We can simplify by choosing the el unit vector to be directed along the
dominant slip direction and assuming that the other component of slip is negligible.

We further simplify by assuming that the el component of Green’s function error is
uncorrelated with the e2 component. So C; becomes diagonal.



Variance of ground motion

Developing a frequency-domain equivalent to Yaki and Fukahata (2011) we
discovered the following simple relation for the variance of the ground motion:

;i (@)= I I 51 (x,0) G (x,X,0) 5, (X, 0) dx dx’

xedx'ed
2 (a)) is the variance in ground velocity of the j-th channel (single
Y component of motion at a particular observation location)
S* (X 60) is the complex conjugate of the slip velocity in the dominant slip
1 ’ direction (called the ‘1’ direction) at point x on the fault

i j i is the covariance of the errorsin
Cfxxa)=E[5J*x51x} 'S
”( 1°722 ) &1 ( 1) gl( 2) the traction Greens functions



Covariance of green function errors

Derived covariance function

Cljl(xl’XZ’w) = E[5glj* (x1)5g1j (Xz)]

C!,, is the covariance of the errors in the traction Greens functions at location x,
on the rupture area A with the errors in the traction Green’s functions at location
X, on the rupture area for the j-th data channel (single component of motion at a
particular observation location).

This covariance function allows us to make realistic estimates of the variance
based on observed data quantifying Green’s function error.



Covariance of green function errors

A simple model for this covariance function might be a function of the separation between points x1 and x2
on the rupture surface, with or without some dependence on frequency. This is one way of quantifying the
spatial heterogeneity.

¢ (Xl’xzﬂw) = E[ﬁglj* (Xl)sglj (Xz)}



Covariance of green function errors

Physically we might expect two different functional forms for the spatial covariance:

If it is dominated by finite frequency effects, we might expect that an element of the covariance of the
Green’s function errors might be

Cj(xl,xz,a)) oc f(|x1 —X,

o)

where f is some decreasing function like a Gaussian centered at the origin. In such a model the errors in
the Green’s functions would be correlated at progressively longer distances as the wavelengths of the

shear wave increased.



Covariance of green function errors

Physically we might expect two different functional forms for the spatial covariance:

If it is dominated by finite frequency effects, we might expect that an element of the covariance of the
Green’s function errors might be
o)

J
C (Xl,xz,w) oc f(|x1 - X,
where f is some decreasing function like a Gaussian centered at the origin. In such a model the errors in

the Green’s functions would be correlated at progressively longer distances as the wavelengths of the
shear wave increased.
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Covariance of green function errors

Physically we might expect two different functional forms for the spatial covariance:
If it is dominated by finite frequency effects, we might expect that an element of the covariance of the
Green’s function errors might be

o)

J —
C (Xl,xz,w) oc f(|x1 X,
where f is some decreasing function like a Gaussian centered at the origin. In such a model the errors in
the Green’s functions would be correlated at progressively longer distances as the wavelengths of the
shear wave increased.

Normalized covariance for three heterogeneity models
Correlation length = 10 km

b
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functions are related to unmodeled spatial R B
variations in the rigidity along the fault surface, "\\
this function might have no frequency A\
dependence.

separation, km



Covariance of green function errors

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 91, NO. B6, PAGES 6465-6489, MAY 10, 1986

Finite Difference Simulations of Seismic Scattering;
Implications for the Propagation of Short-Period Seismic Waves

in the Crust and Models of Crustal Heterogeneity CONSTANT VEL

10% STD DEV

A

ARTHUR FRANKEL
ROBERT W. CLAYTON

0.8 meo
—_

iransverss

They used a 2D finite difference algorithm

to model wave propagation in random

heterogeneous media with three different
autocovariance functions, a self-similar, an

Exponential

exponential, and a gaussian.

These media differ in the spectral
falloff of their velocity fluctuations

i
i

at wavelengths smaller than 2pi
times the correlation distance a.

shown in this paper are

Fig 4. (Left) Synthetic seismograms for a P wave propagating
through a constant velocily medium (see Figure 2 for geometry)
Radial and tramsverse componenis of velocity are shown for receivers
mmmJMmfmmemmdnwduo‘lﬂsmbm

g (Right)

Synthetic seismograms for & P wave mwlmg lhmui.rh an npomml
random medium (o, = 10%, a = 20m, ka = 1.16 at 30 Hz)



Covariance of green function errors

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 91, NO. B6, PAGES 6465-6489, MAY 10, 1986

Finite Difference Simulations of Seismic Scattering;
Implications for the Propagation of Short-Period Seismic Waves
in the Crust and Models of Crustal Heterogeneity

CONSTANT VEL 10% STD DEV
L
ARTHUR FRANKEL radial

A

ROBERT W. CLAYTON 380m
Self-Similar

e s 3 7 8 km iranaverss
Normalized covariance for three heterogeneity models N
Correlation length = 10 km

v
i)
09 k | 1 MR <
. \‘\ : W g
08 '-I\‘ — Gaussian 1 g 1580m t
07 l"‘ ‘\ —————— Exponential 1 xpom“ﬁ - - M AP — :
1
g 0o ‘|‘ FO Von Karman P
% 1 \ L] M
=05 Vo tl
8 LN “ 1
oar N 2780m t
A N ] pa . "
N . > . W i
0.2 \’\~\ ~ < R R !l
0.1 N N S~ R " [
0 5 10 15 2§epar azt?ony . ;o 35 40 45 50 . . 3980m _‘;
Mm‘;‘w&)mmhmmm;:ﬁm-nﬂ;‘: T M [‘
Fig 4. (Left) Synthetic seismograms for a P wave propagating S|
- - : L Rudit and transvrse components of ety re shown fo receivers
Frankel & Clayton (1986) specified the covariance of their random seismic foms 3 o 3980 m fom the o Amplitudes of all s
. . . . . . shown in paper are [| ]
velocity structures, and their variations in wave amplitude were the result of Ryl ooy x . wro cwmming rvagh wn epermmiel

random medium (7, = 10%, a = 20 m, ka - 1.16 at 30 Hz). F
the random structures.



Covariance of green function errors

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 91, NO. B6, PAGES 6465-6489, MAY 10, 1986

Finite Difference Simulations of Seismic Scattering;
Implications for the Propagation of Short-Period Seismic Waves

in the Crust and Models of Crustal Heterogeneity CONSTANT VEL 10% 81D DEV :
radial
ARTHUR FRANKEL P’ 380m

ROBERT W. CLAYTO"!

iranaverss
f

They concluded that random media with self-
similar velocity fluctuations with a correlation

. . . M AP ——r— :

length of a=10 km can explain both teleseismic p
tra.vel'tlme anomghes and the presence of % W u
seismic coda at high frequencies 2780m i
T MO LD i

tl

L] o

lr -

3980m "

We, on the other hand, are using observations .
. . oty % i b , - n . Vel
of aftershock seismograms to look directly at L Fis 4 _(Lef) Sywibetic somogrars for s 7 wave propbgating 51

through a constant velocity medium (se¢ Figure 2 for goometry)

T

. . . Radial and ransverse components of velocity are shown for receivers
the random variation of the traction wave fom. 380 10 3980 m from the source. Ampliudes of all syntheics
shown in this paper are d for i {Right)
ﬁeld Synthetic seismograms for a P wave tmvdmg Ihrou].h an cwomunl F
M random medium (7, = 10%, a = 20 m, ka - 1.16 at 30 Hz). _



Covariance of green function errors

7;2' (@)= _[ I 51 (x,0) C (%, X, @) 5, (X, @) dx dx’

xeAx'eA

To use this equation of the variance y? , we must be able to estimate an accurate spatial covariance

function.
C(xl,xz,a)) oc f(|x1 -X,

o)
There are two possibilities:

1) If you have recordings of many small earthquakes on the rupture surface of interest, you can
treat them as empirical Green’s functions and use them to calculate the error in your theoretical
Green’s functions.

2) If you do not have recordings of many empirical Green’s functions, it might be possible to infer
the needed spatial covariances, following Frankel and Clayton (JGR, 1986), from coda-Q and
teleseismic travel-time and amplitude anomalies.



Covariance of green function errors — Test Case 2009 LAquila earthquake

We have selected for study the 6 April 2009 M6.1 LAquila, central Italy, earthquake and its
on-fault aftershocks, from which we derive covariance function

Map of strong motion and other stations

Elevation
(m)
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1000

42 " ‘

137 13.5° 14



Covariance of green function errors — test case LAquila

Selected aftershock locations and mechanisms a0 ——=

13°30'

We chose as empirical Green’s functions 37 events
recorded by AQU and FIAM seismic stations which have
Mw between 2.3 and 3.8, high signal to noise ratio, and
focal planes within 30 degrees of the main shock
mechanism




Covariance of green function errors — test case LAquila

Two different seismic velocity structures, CIA model, shown by the black and blue curves,
and the receiver function (RF) model, shown by the red and orange curves, were used to
calculate point source synthetics at AQU and FIAM for these aftershocks.

~ 10 |
=] L
<
E I L
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2 [ —
Qs
20|/ = Vp nnCIA.mod
L = Vp Receiver function
= Vs nnCIA.mod
= Vs Receiver function
25 5 1
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Forward models for point sources
whose moment tensor solutions
have been inferred from farther
broadband stations at lower
frequency band.

Observed ground velocity at AQU
(red) and synthetic velocity (blue) for
the RF structure for frequency band
0.02-0.5 Hz. Number is peak velocity
of data seismogram. First 40s of total
60s seismograms are shown.
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Covariance of green function errors — test case LAquila

Observed ground velocity at
AQU (red) and synthetic
velocity (blue) for the RF
structure, plotted at the same
scale as the observations.

We removed from the analysis
those data for which the
observed data had obvious
ground noise or processing
glitches
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Observed ground velocity at FIAM
(red) and synthetic velocity (blue)
for the CIA structure, plotted at the
same scale as the observations, for
a subset of the aftershocks.
Number is peak velocity of data
seismogram. First 40s of total 60s
seismograms are shown.
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Covariance of green function errors — test case LAquila
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Covariance of green function errors — test case LAquila

Recovering traction from ground velocity C/ (x,.x,,0)= [Sg{*(x1)6g{ (x2)}
We need to
For each frequency and component of motion we form the complex difference compute error in
] i reen function unit
A =v —s/ ¢

s; is the aftershock synthetic

v; is the observed aftershock datum, which is the product of a moment times the v, = %g
Green’s function divided by a rigidity. o

The complex difference for each frequency and component is then

A]—v—s P]gl

Where ISij be our jth incorrect estimate of —

Ui

Normalizing by seismic moment and rigidity yields a quantity with the units of the traction Green’s
function, namely the scaled complex difference (or equivalently the empirical traction error)

5 = (eal/B )= 2mgl

1

Unit of this empirical traction error are km”-2. the units of covariance of the errors in Fourier transform is km”-4.



Covariance of green function errors — test case LAquila

1

Empirical traction errors differences in the complex plane for AQU station using CIA model

AQU-CIA scaled differences
They show that the strike-parallel component
empirical traction errors

0.5

o
o

0.45

grow in magnitude as 3 oe o4
frequency increases, g o4 035
justifying the §; o b B
appropriateness of our Q 9
frequency-domain oz e %,’
approach. 0 02 &
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The colored dots showing the empirical = 0 &
: -g P ], 05 g0 qz\%.\\x“\ks\“\\\\“

traction errors for a particular aftershock = A

are strung together with a black line =

Argand plot



Covariance of green function errors — test case LAquila

Empirical traction errors differences in the complex plane for AQU station using RF model

AQU-RF scaled differences iy

06 strike-parallel component
For many aftershocks the empirical

traction errors form expanding
helices, corresponding to

0.5

0.4

progressive phase shifts as a g&a o
function of frequency Z o 3
I.I‘: 0.25 ;%_

0.1 *
We have not introduced ‘static _ v
corrections’ into the theoretical %‘ 005 015
Green’s functions to remove these S 01
time mismatches because time '?% .
mismatches are errors in the :2: . 005

= 0.05

theoretical Green’s functions, the
effect of which we hope to quantify -



Covariance of green function errors — test case LAquila

The covariance between the empirical traction at x; and x, for component of motion j and frequency index n is

K (a)n)zcljl(xi,xk,a)n)zE[&g{ (xi,a)n)* Sgl (xk,a)n)} :E[Af(xi,a)n)* A/ (xk,a)n)}

we omit the slip direction indices entirely as the aftershock rakes are
chosen to be within 30 degrees of the dominant slip direction



Covariance of green function errors — test case LAquila

K (w,)=C, (xi,xk,a)n)zE[5glj (xi,a)n)* Sgi (xk,a)n)} :E[Af (xi,a)n)* A (xk,a)n)}

To take the expected value, we average the above over all three components of
motion j and over a frequency band of three adjacent frequencies n:

n0+2

1o 1 .
C(Xi’xk’wno): gzlgnzzn Re(AJ (Xl.,a)n)

j:

*

A (x,.0, ))

We call each value of C(Xi’xk’wno)

a covariance datum, and in the next slide we plot all the covariance data for a = |X. —X
l

single station and frequency band n_ as a function of separation k|



Covariance of green function errors — test case LAquila

Re(cov) for f=0.26672-0.30006 Hz, data from three components merged

4 Median shown in 10 distance bins
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Covariance of green function errors — test case LAquila

IM(cov) for =0.26672-0.30006 Hz, data from three components merged

<1074 Median shown in 10 distance bins
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The median of the imaginary part of the covariance data is not significantly different from zero



Covariance of green function errors — test case LAquila

AQU / RF
AQU COVARIANCE FUNCTIONS FOR ALL STUDIED FREQUENCIES Distance-binned median RE(covariance) in 10 frequency bands
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Covariance of green function errors — test case LAquila

NORMALIZED COVARIANCE FUNCTIONS FOR ALL STUDIED FREQUENCIES

AQU /RF

Normalized distance-binned median RE(covariance) in 10 frequency bands
T T T T

m= w== == average of 10 frequency bands
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Covariance of green function errors — test case LAquila

NORMALIZED COVARIANCE FUNCTIONS FOR ALL STUDIED FREQUENCIES

AQU + RF model FIAM + CIA model The dashed average
Normalized distance-binned median RE(covariance) in 10 frequency bands Normalized distance-binned median RE(covariance) in 10 frequency bands . .
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Covariance of green function errors — test case LAquila

NORMALIZED COVARIANCE FUNCTIONS FOR ALL STUDIED FREQUENCIES

AQU + RF model

Normalized distance-binned median RE(covariance) in 10 frequency bands
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Covariance of green function errors — test case LAquila

NORMALIZED COVARIANCE FUNCTIONS FOR ALL STUDIED FREQUENCIES
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m-4

Normalized covariance

AQU + RF model

Normalized distance-binned median RE(covariance) in 10 frequency bands
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Variance— test case LAquila

We evaluate y? for a specific rupture model of the LAquila earthquake, namely the minimum cost model
found by Cirella et al. (2009)

Ve (a’)Z J- j Sl*(X,a))KSC (r,a))sl(x',a)) dx dx’'

xeAx'eAd

where
* jisthe channel number, a single component of motion at a single station
* Aisthe rupture area.

Best fitting LAquila rupture model

We developed a continuous empirical covariance function
K(r,w) to insert into the equation. Because FIAM resulted
frequency independent we adopt the dashed average

correlation while for AQU we adopt each individual
colored function.

distance down dip, km

distance along strike, km



Variance— test case LAquila

The resulting standard deviation y (square root of real y?) spectra for all components

Y for AQU/RF - frequency dependent covariance functions

strike-parallel component
strike-perpendicular component
vertical component

203329

10-2 | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6

frequency, Hz
The alternately depressed and elevated spectral levels
are caused by use of the individual colored linear
median covariance functions

Ysm

Y for FIAM/ CIA

strike-parallel component
strike-perpendicular. component
vertical component

zzzzz
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frequency, Hz



Variance— test case LAquila

Now we can compare the main shock data-minus-synthetic misfit with vy, the misfit expected
from green’s function errors.

Best fitting LAquila rupture model

E 0.2 strike - parallel strike - normal vertical
£ 2 synthetic
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< o .
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Variance— test case LAquila

Comparison of data-synthetic misfits with Y for AQU / RF
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Variance— test case LAquila

The agreement
of the y spectrum
with the red
misfit tells us
that the misfit
we see in the
seismogram is
consistent with
the misfit
expected

o
N

Fourier amplitude spectrum, m

ground velocity, m/s
o

Comparison of data-synthetic misfits with Y for AQU / RF
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Variance— test case LAquila

The y
spectrum lies
below the red
misfit from
0.25-0.45
Hz: the
seismogram is
underfit.

ground velocity, m/s
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Fourier amplitude spectrum, m

o
N
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Comparison of data-synthetic misfits with Y for AQU / RF
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Variance— test case LAquila

Strike — parallel
component are
over-fit: it
shows an
excessively
good fit to the
data
considering the
non-negligible
theory errors.

o
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Fourier amplitude spectrum, m

ground velocity, m/s
o

Comparison of data-synthetic misfits with Y for AQU / RF
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Variance— test case LAquila

Comparison of data-synthetic misfits with Y for FMG / CIA
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Variance— test case LAquila

Comparison of data-synthetic misfits with Y for FMG / CIA

These error estimates are very disturbing. strike - parallel strike - normal vertical
Most investigators would consider the goo synthetic
waveform fit of the all components at FMG as 3z date
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Conclusions

Comparison of data-synthetic misfits with ¥ for AQU / RF

SUMMARY — 1 é 021 strike - parallel strike - normal vertical
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EW NS ub
SUMMARY -1 ﬁf 4.77e-02 M 4.84e-02 ” 2.37e-02

Are ground motion inversions corrupted by Green’s s 24003 5 690.03 > 77003
function errors? May we have computed to

. 3.98e-03 4.44e-03 1.94e-03
excessively large y? W W OWMW?
9.78e-02 9.27e-02 f l 4.25e-02

1.65e-02 1.47e-02 8.13e-03

[4£\ Lzdv

€7y

v

One might argue that our comparison of Green’s
functions to aftershock waveforms is quite bad; for
example, there is no hope of fitting the aftershock

4.62e-02 2.85e-02 1.43e-02
codas.
l 1.24e-02 9.85e-03 p 4.55e-03

However, the observed main shock seismograms contain the codas of early rupturing parts of
the rupture, so it is necessary to consider the codas in the aftershock modeling.

974V STy

LTdv

No measurement of Green’s function error is typically done for crustal earthquakes, so it might
be that rather than being catastrophically bad, our comparison is one of the best achievable.



Source variabilities and Green function errors — Future applications

Two other sources of variability in earthquake ground velocity

v(oy) =[s gVda+ [os gVda+ [s ogVda+ [5s 5gda

xeA

xed xeA

L

the ground velocity
caused by perturbations
of the rupture model

xeAd

L

the ground velocity caused
by joint perturbations of
the rupture model and
errors in the Green’s
functions



Source variabilities and Green function errors — Future applications

The variability in ground velocity of the j-th channel (single component of oV = j s g(j)dA
motion at a particular observation location) caused by perturbations of J y
the rupture model has the following variance: Xe
' J ' '
pi (@ I j g )Sll(x,x,a))gl( )(x,a))dxdx
xcAx'cA

It depends on the spatial covariance of perturbations of the rupture model S,,

sy (x)3s, (x')  Ss; (x)5s, (x')

S(x,x,®w)=E| ,
5s,(x)8s; (x') Is,(x)Js, (x')



Source variabilities and Green function errors — Future applications

The variability in ground velocity of the j-th channel (single component of oV = j s g(j)dA
motion at a particular observation location) caused by perturbations of J

. . xed
the rupture model has the following variance:

pi (@)= I j gl (x,0) S (x,x',0) g (x', ) dx dx’

xcAx'cA

It depends on the spatial covariance of perturbations of the rupture model S,,
Future applications

» The primary use will be in seismic hazard studies to calculate the variability of synthetic seismograms given an
ensemble of rupture models

» The variance of the ground motion is determined directly, skipping the step of calculating the ground motions
of many rupture models.



Source variabilities and Green function errors — Future applications

Variability of the ground velocity

due to the interaction between &s SVE = _[55 sgdq = j (5S1 sg) +5s, 5g2(j))dA

and dg has the following variance: xeA xed

512 (@)= j _[ COV[5S1 (x') 5g1(j) (x'), &s(x) 5g1(j) (X):| dx dx’

xed x'ed

Future applications

The possibility of a nonzero covariance between ds and dg in the error interaction term opens an
interesting line of research. We can imagine that spatial variations of rigidity in the fault zone might cause
spatial variations of 0g. These spatial variations of rigidity might also cause correlated variations in the

rupture process 9s. It would be very interesting to look for such correlations in numerical simulations of
spontaneous rupture in heterogeneous media.

This expression is new to seismic hazard research, because ds and dg might not
be small this variance can be significant



SUMMARY -2

We have found a simple equation relating the variance in the ground motions predicted from a
given slip model to the spatial covariance function of the Green’s function errors.

This variability would be considered to be epistemic, as it is caused by unknowns in the Earth
structure, which could be improved by collection of more data.

The spatial covariance function of Green’s function errors can be recovered from analysis of small
earthquakes (like aftershocks) spanning the rupture surface.

For regions with sparse seismicity, it might be possible to define a spatial covariance function from
study of teleseismic amplitude and travel-time variations, and from coda-Q.



SUMMARY -3

We have computed the expected variance (and the standard deviation) of ground motion
variations due to Green’s function errors for the Mw=6.1 2009 LAquila earthquake;

We have compared the inferred standard deviation with the misfit of synthetic and real
data for the Mw=6.1 2009 L’Aquila earthquake and we have discussed/discovered which
are the data over-fitted by the slip model.



SUMMARY — from LITERATURE (Yagi and Fukuhata 2011, Minson
et al 2013-2014, Duputel et al. 2012-2014...)

* All the proposed studies develop a model-prediction covariance matrix that accounts for
the theory errors;

* These covariance matrix can be use to compute kinematic inversion;

* The improved modelling of Cp is expected to lead to more reliable images of the
earthquake rupture, that are more resistant to overfitting of data and include more realistic
estimates of uncertainty on inferred model parameters. Duputel et al. suggest that, if more
information is available about prior probability density describing the uncertainty of the
parameters, another more informative form of PDF can be used.

* This methodology can enable production of the next generation of source models that are
more resistant to over-fitting of data.



SUMMARY — from Spudich et al 2019

*  We explicitly accept that the seismic-velocity structure of the medium has random three-
dimensional variations on all scales;

 The most general way to characterize these variations is through a statistical model from
the spatial covariance based on a combination of observations of empirical Green’s functions;

* We use observed aftershock seismograms to derive an empirical spatial-covariance matrix;

* As alternative methodology, instead of adopting a Bayesian approach to derive a kinematic
rupture models, we propose to adopt a cost function that is consistent with the covariance
(that is, to find rupture models that fit the data within the error bounds given by the variance
by using a chi-squared test) and this will reduce significantly the number of explored models.



