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Inferring earthquake source models is an essential ingredient in efforts to understand the physics of seismic rupture 
phenomena and the relationship of an earthquake with its tectonic and geodynamic environment. The earthquake source 
model is not only an end into itself but serves as input into a variety of other related applications such as earthquake energy 
budget, Coulomb stress calculations, seismic hazard, PGV estimates…

However, source inversion algorithms usually do not include realistic error analyses and their results are generally not 
accompanied by reliable estimates of uncertainty. These limitations reduce the utility of inferred rupture models and 
associated by-products. Furthermore, uncertainty in both data and model predictions can cause current source 
models to be significantly biased due to overfitting of seismic and geodetic observations (Duputel et al. 2014).

Intro

It is fundamental to find «reliable» solutions



Overfit: to obtain an excessively good fit to the data considering the non-negligible
errors. This meaning differs from the typical usage in statistics where overfit implies that
a model has been overparametrized and fits noise as well as signal.

Dictionary:



Given a kinematic slip model and a local seismic velocity structure, it is straightforward to
calculate the resulting ground motions deterministically.

Introduction
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Izmit 1999 earthquake source models

The reliability of any source inversion depends on many factors including the size and complexity 
of the event, the amount and quality of data, the way in which data sample the source region 
and, while usually disregarded, uncertainties in our forward models (i.e. our model predictions).

Duputel et al. 2014

Introduction



Minson et al. 2013
We distinguish two sources of
uncertainty:
the first class of error is induced by
imperfect measurements and is often
referred to as observational error.

The second source of uncertainty is
generally neglected and corresponds to
the prediction error, that is the
uncertainty due to imperfect forward
modelling.

Introduction

1992 Mw 7.3 Landers, California earthquake



Vp & Vs 1D model

The prediction error is due to imperfect forward modelling, also referred to as epistemic error. For
earthquake source modelling problems, this component includes but is not limited to, lack of fidelity
in the fault geometry, oversimplifications of the mechanical earth model and approximations made
when calculating the Earth’s response to an applied force (theory error).

Example: during the forward modeling we have to assume some Earth structure (seismic
velocities, density and anelastic attenuation) that is necessarily inaccurate (even if we use 1D
models or 3D models).

Introduction



LITERATURE –

ü Recently Yagi and Fukahata (2011) presented a method to include uncertainties in Green

functions (theory errors) into an inversion for earthquake rupture behavior, by using a time-

domain approach. They were possibly the first investigators to try to quantify the variation of

the ground motions caused by errors in the Green’s function.

ü Theory errors are also included in Bayesian inversion (Duputel et al (2012), Duputel et al.

(2014), Minson et al (2013), Ragon et al. (2018)), by using a time-domain approach, through

theoretical considerations.

Literature
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Yagi and Fukuhata 2011 introduce uncertainty of Green’s function into waveform
inversion analyses. They proposed a stochastic forward model (in terms of probability
density function) based on adding Gaussian noise to the unattenuated 1-D teleseismic
Green’s functions. This Gaussian noise is characterized by a covariance matrix that is
partially specified apriori. Due to the propagation law of errors, the uncertainty of
Green’s function results in a data covariance matrix with significant off-diagonal
components whose elements are proportional to the square of the maximum value of
theoretical Green’s functions.

Yagi and Fukuhata 2011 Literature

They apply this new methodology to the 2006 July 17 Java tsunami earthquake



Overfit: to obtain an excessively good fit to the data considering the non-negligible
errors. This meaning differs from the typical usage in statistics where overfit implies that
a model has been overparametrized and fits noise as well as signal.

Covariance: is a measure of the joint variability of two random variables.

Dictionary:

Covariance matrix: is a matrix whose element in the i, j position is
the covariance between the i-th and j-th elements of a random vector. Each element
on the principal diagonal of the covariance matrix is the variance of one of the 
random variables
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Duputel et al (2014)

Duputel et la 2014 provide a general formalism to explicitly quantify the impact of uncertainties in 
forward models and to rigorously incorporate such uncertainties in source inversion problems. They 
use a stochastic forward modelling approach  that permits to describe a probability distribution of 
predictions for a given source model, contrary to a deterministic approach that provides a single set 
of predictions. AS

SU
M

PT
IO

N
Literature



Overfit: to obtain an excessively good fit to the data considering the non-negligible
errors. This meaning differs from the typical usage in statistics where overfit implies that
a model has been overparametrized and fits noise as well as signal.

Covariance: is a measure of the joint variability of two random variables.

Probability density function (PDF): is a function whose value at any given sample in
the sample space can be interpreted as providing a relative likelihood that the value of
the random variable would equal that sample.
The PDF is used to specify the probability of the random variable falling within a
particular range of values.

Dictionary:



Duputel et al (2014)

Duputel et la 2014 quantify the impact of uncertainties (due to both observational error and 

prediction error) and  incorporate such uncertainties in source inversion problems. 

Both sources of uncertainty can be formulated by use the misfit covariance matrix, Cχ , which 

combines a covariance matrix for observation errors, Cd and a covariance matrix for prediction errors, 

Cp, associated with inaccurate model predictions.

They use a Bayesian inversion procedure in which they combine prior informations to 

construct a posterior distribution for source model parameters.  
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INVERSION PROCEDURE

Literature

Cχ=Cd+Cp

by defining a least-squares misfit function the likelihood function depends on Cx



Duputel et al (2014)

The probability density function (PDF)  for the observational error (stochastic model) 
is assumed to be a Gaussian with Covariance matrix Cd and mean zero.

A common model is to take independent observational errors (i.e. diagonal Cd). 
However, for observations like InSAR, off-diagonal components should be included in Cd 
to allow correlation of measurement errors between neighboring data samples.

The PDF for the prediction error (stochastic forward model) describes the uncertainty
in the actual physical quantity d given dpred and is assumed to be Gaussian with 
Covariance matrix Cp and mean zero. This error scales approximately with the size of 
earthquakes and, for large events, the contribution of Cd is thus frequently negligible
compared to Cp.

Literature

Cd

Cp

e=d-d*

! = d − %&'()

observational error 

prediction error



Duputel et al (2014)Literature

Why does Cp error scale approximately with the size of earthquakes?

g(Y,m) is a deterministic model for a source model m and Y represents a set 
of uncertain properties (e.g., rigidity, density, fault geometry…):

! = d − %&'() = % − *(,Ψ,/)
where ,Ψ represents the most plausible value a priori (erroneous). 

If we consider the linear formulation of the forward problem g(Y,m)=G(Y) m

Therefore we can write:

! = d − %&'() = * Ψ,/ − * ,Ψ,/ = [2 Ψ − 2 ,Ψ ] 4 /



Duputel et al (2014)

How do they design a prediction covariance matrix Cp?
If the uncertainty is due to a specific parameter Y (like the rigidity) after many
equations Duputel et al. 2014 found that:

where CY represents the covariance matrix of that parameter and KY represents a
kernel (that is the partial derivative of the model respect to that parameter).
Duputel et al. 2014 assume that the prior probability density describing the
uncertainty of the pameters Y follows a Gaussian distribution and its covariance
matrix CY is:

This covariance matrix is built throught a large number (> 1000) of stochastic earth
model realizations.

Literature



How to use these information on the uncertainties during the 
kinematic rupture inversions?

Duputel et al (2014)Literature

Example: Bayesian inference to infer the
static slip distribution from geodetic
data in a vertically varying medium.

The mean of the posterior distributions are shown in black1000 stochastic realizations considering the 
layer thickness and shear modulus uncertain



How to use these information on the uncertainties during the 
kinematic rupture inversions?

Duputel et al (2014)Literature

Marginal posterior probability densities for all
possible pairs of fault patches. Numbers
increase as a function of depth.

These PDF show very narrow peaks at
large depth that are clearly shifted with 
respect to the target slip values. If Cp is
included, they obtain much broader
posterior distributions centred around a 
mean model that is in agreement with 
the target slip model



Biblio

How to use these information on the uncertainties during the 
kinematic rupture inversions?

They recognize that their prediction covariance matrix Cp should also depend on the 
earthquake source model and is not just a constant matrix, that is, changing the magnitude 
and distribution of fault slip will change Cp for a given elastic model. 
For practical implementation, there are different ways of dealing with the dependence of Cp
upon the source model m. They test two ways:
1) They calculate Cp (mprior)using an apriori source model, mprior, such as a preliminary finite-

fault model and assume that Cp is constant. 
2) They propose to update the prediction covariance iteratively during the source inversion 

process.

Duputel et al (2014)



LITERATURE –

ü Recently Yagi and Fukahata (2011) presented a method to include uncertainties in

Green functions (theory errors) into an inversion for earthquake rupture behavior,

by using a time-domain approach. They were possibly the first investigators to try

to quantify the variation of the ground motions caused by errors in the Green’s

function.

ü Theory errors are also included in Bayesian inversion (Duputel et al (2012), Minson

et al (2014), Ragon et al. (2018)) through theoretical considerations.

None of the investigators actually measured Green’s function errors.

Literature



We want to compute the impact of uncertainties of crustal model and 
we derive the covariance matrix by measuring Green’s function errors.

GOAL: 

GOAL



OUTLINES -

1) Present an equation of ground velocity that includes the Green function errors (frequency domain);

2) Derive the expected variance !" caused by Green function errors for a large earthquake;

3) Compute the Green function errors for a test case (L’Aquila region);

4) Compare these errors with the misfit of the best model for the  2009 L’Aquila event, Mw 6.1;

5) General discussion on source variabilities and green functions errors;

6) Future applications.

Outlines



All the results presented in the following slides come from:

Spudich et al 2019



Let the true tractions on a fault at point caused by a point force in the j-direction at the observer at y be 

Let its numerical approximation based on an inaccurate velocity structure be 

Let its error be 

so we have… 

A major problem is that we do not know the seismic velocity structure perfectly and 
our methods for calculating  traction Green’s functions are inaccurate.

   
g j( ) x,ω ;y( ) 

    
!g j( ) x,ω ;y( ) 

   
δg j( ) x,ω ;y( )

    
g j( ) x,ω ;y( ) = !g j( ) x,ω ;y( ) +δg j( ) x,ω ;y( )

Similarly, the relation between the true slip velocity, the assumed and the variation in slip velocity can be 
written:

( ) ( ) ( ), , ,w w d w= +s x s x s x

Green function errors



Ground velocity in frequency domain:

( ) ( ) ( ), , , .j j jd v nw w w= +y y y
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Noise-free Ground velocity:

   
v j ω ,y( ) is the Fourier Transform of 

the j component of ground 
velocity at location y

  
s x,ω( ) is the Fourier Transform 

of the slip velocity 
vector at location x

Green function errors



Ground velocity in frequency domain

( ) ( ) ( ) ( ) .j j j j

A A A A
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Î Î Î Î
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x x x x

s g s g s g s g
   
v j ω ,y( )

s
jvd

g
jvd

sg
jvd

is a measure of the 
aleatory variability in the 
ground velocity caused 
by rupture source 
variability.

is a measure of the 
epistemic variability in 
the ground velocity 
because errors in the 
geologic structure. 

is the ground velocity caused 
by the interaction of dg and ds. 
it might not be negligible 
depending on the amplitudes 
of ds and dd.

These terms show how variations in the rupture model and errors in the Green’s functions 
contribute to the total motion.

Green function errors



Ground velocity in frequency domain

I will show you how errors in the Green’s functions contribute to the total motion

s
jvd g

jvd
sg
jvd

Green function errors

( ) ( ) ( ) ( ) .j j j j

A A A A

dA dA dA dAd d d d
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x x x x

s g s g s g s g
   
v j ω ,y( )



The variation in ground velocity caused by errors in our Green’s function is 

We compute the variance of !" of this term dvg that can be related to the statistics of 
the Green’s function error. This variance is a function of frequency, component and 
observation location.  

Green function errors
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Green function errors
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= -ås x e x xxThe slip velocity function

By using the multidimensional delta method, 
Considering the function u(w) (Papanicolaou, 2016)
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Ground velocity in frequency domain:



2 †
j j j jg =Ñ Ñu C u

Green function errors

where the dagger connotes complex-conjugate transpose.
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By using the multidimensional delta method, the variance of u(w) (Papanicolaou, 2016)

( ) ( ) ( )  :    ki t
qk qkA a T B e ww w w -=

Aqk is the source term filtered with operator B(w)

and

the covariance is:
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Covariance of the Green’s function errors between point x and y
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Then for a particular source "̃, the variance is:

Green function errors
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Green function errors

We can simplify for the common case that the rake in an earthquake rupture is primarily
unidirectional. We can simplify by choosing the e1 unit vector to be directed along the
dominant slip direction and assuming that the other component of slip is negligible.
We further simplify by assuming that the e1 component of Green’s function error is
uncorrelated with the e2 component. So Cj becomes diagonal.

The general form is:



Developing a frequency-domain equivalent to Yaki and Fukahata (2011) we
discovered the following simple relation for the variance of the ground motion:

   s1
* x,ω( )

   
C11

j x1,x2,ω( ) = E δ g1
j* x1( )δ g1

j x2( )⎡
⎣

⎤
⎦

is the variance in ground velocity of the j-th channel (single 
component of motion at a particular observation location)

is the complex conjugate of the slip velocity in the dominant slip 
direction (called the ‘1’ direction) at point x on the fault 

is the covariance of the errors in 
the traction Greens functions 

( )2
jg w

( ) ( ) ( ) ( )2 *
1 11 1, , , ,j

j
A A

s C s d dg w w w w
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Variance of ground motion 



   
C11

j x1,x2,ω( ) = E δ g1
j* x1( )δ g1

j x2( )⎡
⎣

⎤
⎦

Covariance of green function errors 

Derived covariance function

CJ
11 is the covariance of the errors in the traction Greens functions at location x1

on the rupture area A with the errors in the traction Green’s functions at location
x2 on the rupture area for the j-th data channel (single component of motion at a
particular observation location).

This covariance function allows us to make realistic estimates of the variance
based on observed data quantifying Green’s function error.



A simple model for this covariance function might be a function of the separation  between points x1 and x2 
on the rupture surface, with or without some dependence on frequency.  This is one way of quantifying the 
spatial heterogeneity.

Covariance of green function errors 

   
C11

j x1,x2,ω( ) = E δ g1
j* x1( )δ g1

j x2( )⎡
⎣

⎤
⎦



Physically we might expect two different functional forms for the spatial covariance:

If it is dominated by finite frequency effects, we might expect that an element of the covariance of the 
Green’s function errors might be

where f is some decreasing function like a Gaussian centered at the origin.  In such a model the errors in 
the Green’s functions would be correlated at progressively longer distances as the wavelengths of the 
shear wave increased. 

   
C j x1,x2,ω( )∝ f x1 − x2 ,ω( )

Covariance of green function errors 



Physically we might expect two different functional forms for the spatial covariance:
If it is dominated by finite frequency effects, we might expect that an element of the covariance of the 
Green’s function errors might be

where f is some decreasing function like a Gaussian centered at the origin.  In such a model the errors in 
the Green’s functions would be correlated at progressively longer distances as the wavelengths of the 
shear wave increased. 

   
C j x1,x2,ω( )∝ f x1 − x2 ,ω( )
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Covariance of green function errors 
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C j x1,x2,ω( )∝ f x1 − x2 ,ω( )
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Covariance of green function errors 

On the other hand, if errors in the Green’s
functions are related to unmodeled spatial
variations in the rigidity along the fault surface, 
this function might have no frequency
dependence.



JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 91, NO. B6, PAGES 6465-6489, MAY 10, 1986

Finite Difference Simulations of Seismic Scattering;
Implications for the Propagation of Short-Period Seismic Waves

in the Crust and Models of Crustal Heterogeneity

ARTHUR FRANKEL

ROBERT W. CLAYTON

They used a 2D finite difference algorithm 

to model wave  propagation in random 

heterogeneous media with three different 

autocovariance functions, a self-similar, an 
exponential, and a gaussian.  

Covariance of green function errors 

These media differ in the spectral

falloff of their velocity fluctuations

at wavelengths smaller than 2pi 

times the correlation distance a.



Covariance of green function errors 

Frankel & Clayton (1986) specified the covariance of their random seismic
velocity structures, and their variations in wave amplitude were the result of
the random structures.
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Covariance of green function errors 

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 91, NO. B6, PAGES 6465-6489, MAY 10, 1986

Finite Difference Simulations of Seismic Scattering;
Implications for the Propagation of Short-Period Seismic Waves

in the Crust and Models of Crustal Heterogeneity

ARTHUR FRANKEL
ROBERT W. CLAYTON

We, on the other hand, are using observations 
of aftershock seismograms to look directly at 
the random variation of the traction wave 
field.

They concluded that random media with self-
similar velocity fluctuations with a correlation 
length of a=10 km can explain both teleseismic 
travel time anomalies and the presence of 
seismic coda at high frequencies 



   
C x1,x2,ω( )∝ f x1 − x2 ,ω( )

To use this equation of the variance !" , we must be able to estimate an accurate spatial covariance 
function.

There are two possibilities:

1) If you have recordings of many small earthquakes on the rupture surface of interest, you can 
treat them as empirical Green’s functions and use them to calculate the error in your theoretical 
Green’s functions.

2) If you do not have recordings of many empirical Green’s functions, it might be possible to infer 
the needed spatial covariances, following Frankel and Clayton (JGR, 1986), from coda-Q and 
teleseismic travel-time and amplitude anomalies. 

Covariance of green function errors 

( ) ( ) ( ) ( )2 *
1 11 1, , , ,j
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x x
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We have selected for study the 6 April 2009 M6.1 L’Aquila, central Italy, earthquake and its 
on-fault aftershocks, from which we derive covariance function

Map of strong motion and other stations

0

1000

2000

3000

Elevation
(m)

Covariance of green function errors – Test Case 2009 L’Aquila earthquake 



Selected aftershock locations and mechanisms

Covariance of green function errors – test case L’Aquila 

We chose as empirical Green’s functions 37 events 
recorded by AQU and FIAM seismic stations which have 
Mw between 2.3 and 3.8, high signal to noise ratio, and 
focal planes within 30 degrees of the main shock 
mechanism



Two different seismic velocity structures, CIA model, shown by the black and blue curves,
and the receiver function (RF) model, shown by the red and orange curves, were used to
calculate point source synthetics at AQU and FIAM for these aftershocks.

Covariance of green function errors – test case L’Aquila 



Observed ground velocity at AQU
(red) and synthetic velocity (blue) for 
the RF structure for frequency band 
0.02-0.5 Hz. Number is peak velocity 
of data seismogram. First 40s of total 
60s seismograms are shown. 
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Forward models for point sources 
whose moment tensor solutions 
have been inferred from farther 
broadband stations at lower 
frequency band.
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Observed ground velocity at 
AQU (red) and synthetic 
velocity (blue) for the RF 
structure, plotted at the same 
scale as the observations.

We removed from the analysis 
those data for which the 
observed data had obvious 
ground noise or processing 
glitches
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Observed ground velocity at FIAM
(red) and synthetic velocity (blue) 
for the CIA structure, plotted at the 
same scale as the observations, for 
a subset of the aftershocks. 
Number is peak velocity of data 
seismogram. First 40s of total 60s 
seismograms are shown. 
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Observed ground velocity at FIAM
(red) and synthetic velocity (blue) 
for the CIA structure, plotted at the 
same scale as the observations, for 
a subset of the aftershocks. Number 
is peak velocity of data seismogram. 
First 40s of total 60s seismograms 
are shown. 

The moment-tensor solutions 
were obtained by fitting lower 
frequency data at more distant 
stations. Thus, fits shown in these 
figures are not the result of 
inversions of the observed 
aftershock data but rather of 
forward modeling of these events 
at frequencies up to 0.5 Hz. 
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For each frequency and component of motion we form the complex difference 

vi is the observed aftershock datum, which is the product of a moment times the 
Green’s function divided by a rigidity. 

si is the aftershock synthetic

The complex difference for each frequency and component is then  

Normalizing by seismic moment and rigidity yields a quantity with the units of the traction Green’s 
function, namely the scaled complex difference (or equivalently the empirical traction error)

Δ i
j = vi − si

j

i
i i

i

Mv g
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=

( )j j j ji
i i i ij
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æ ö
D = D = -ç ÷

è ø
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Recovering traction from ground velocity

Covariance of green function errors – test case L’Aquila 

   
C11

j x1,x2,ω( ) = E δ g1
j* x1( )δ g1

j x2( )⎡
⎣

⎤
⎦

We need to 
compute error in 

green function unit

Where !"#$ be our jth incorrect estimate of  %&
'(

Unit of this empirical traction error are km^-2. the units of covariance of the errors in Fourier transform is km^-4.
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Empirical traction errors differences in the complex plane for AQU station using CIA model

They show that the 
empirical traction errors 
grow in magnitude as 
frequency increases, 
justifying the 
appropriateness of our 
frequency-domain 
approach. 

Covariance of green function errors – test case L’Aquila 

Argand plot

The colored dots showing the empirical 
traction errors for a particular aftershock 
are strung together with a black line
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Empirical traction errors differences in the complex plane for AQU station using RF model

For many aftershocks the empirical 
traction errors form expanding 
helices, corresponding to 
progressive phase shifts as a 
function of frequency

We have not introduced ‘static 
corrections’ into the theoretical 
Green’s functions to remove these 
time mismatches because time 
mismatches are errors in the 
theoretical Green’s functions, the 
effect of which we hope to quantify

Covariance of green function errors – test case L’Aquila 



The covariance between the empirical traction at xi and xk for component of motion j and frequency index n is 

( ) ( ) ( ) ( ) ( ) ( )* *
11 1 1, , , , , ,j j j j j j

ik n i k n i n k n i n k nK C E g g Ew w d w d w w wé ù é ù= = = D Dë û ë ûx x x x x x

we omit the slip direction indices entirely as the aftershock rakes are 
chosen to be within 30 degrees of the dominant slip direction

Covariance of green function errors – test case L’Aquila 



   
C x i ,xk ,ω no
( ) = 1

3
1
3

Re Δ̂ j x i ,ω n( )* Δ̂ j xk ,ω n( )( )
n=no

no+2

∑
j=1

3

∑

To take the expected value, we average the above over all three components of 
motion j and over a frequency band of three adjacent frequencies n:

We call each value of    
C x i ,xk ,ω no
( )

a covariance datum, and in the next slide we plot all the covariance data for a 
single station and frequency band no as a function of separation   r = x i − xk

( ) ( ) ( ) ( ) ( ) ( )* *
11 1 1, , , , , ,j j j j j j
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Covariance functions for 
10 frequency bands at 
AQU using the RF velocity 
structure

AQU COVARIANCE FUNCTIONS FOR ALL STUDIED FREQUENCIES

Covariance of green function errors – test case L’Aquila 
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Covariance of green function errors – test case L’Aquila 

the high frequency covariance functions (red, orange, yellow, and green) 
lying below the dashed average.
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the low frequency data (blue, purple, gray, and black) 
lie above the dashed average
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We evaluate g2 for a specific rupture model of the L’Aquila earthquake, namely the minimum cost model 
found by Cirella et al. (2009)

where
• j is the channel number, a single component of motion at a single station 
• A is the rupture area.

( ) ( ) ( ) ( )2 *
1 1, , ,sc

sc
A A

s K r s d dg w w w w
¢Î Î

¢ ¢= ò ò
x x

x x x x

Variance– test case L’Aquila 

We developed a continuous empirical covariance function
K(r,w) to insert into the equation. Because FIAM resulted
frequency independent we adopt the dashed average
correlation while for AQU we adopt each individual
colored function.



The resulting standard deviation g (square root of real g2) spectra for all components
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The alternately depressed and elevated spectral levels 
are caused by use of the individual colored linear 
median covariance functions 



Variance– test case L’Aquila 

Now we can compare the main shock data-minus-synthetic misfit with g, the misfit expected 
from green’s function errors.  
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AQU station

The agreement
of the g spectrum
with the red
misfit tells us
that the misfit
we see in the 
seismogram is
consistent with 
the misfit
expected
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These error estimates are very disturbing.
Most investigators would consider the
waveform fit of the all components at FMG as
being good fits.

If these error estimates are correct and
representative of typical errors in rupture
inversions using numerical Green’s functions,
it implies that the slip models of the many
rupture models derived from past
earthquakes are much less well resolved than
currently thought.
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SUMMARY – 1
Are ground motion inversions corrupted by Green’s
function errors? May we have computed to
excessively large g?

One might argue that our comparison of Green’s
functions to aftershock waveforms is quite bad; for
example, there is no hope of fitting the aftershock
codas.

Conclusions
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SUMMARY – 1
Are ground motion inversions corrupted by Green’s
function errors? May we have computed to
excessively large g?

One might argue that our comparison of Green’s
functions to aftershock waveforms is quite bad; for
example, there is no hope of fitting the aftershock
codas.

Conclusions

However, the observed main shock seismograms contain the codas of early rupturing parts of
the rupture, so it is necessary to consider the codas in the aftershock modeling.

No measurement of Green’s function error is typically done for crustal earthquakes, so it might
be that rather than being catastrophically bad, our comparison is one of the best achievable.
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Source variabilities and Green function errors – Future applications

Two other sources of variability in earthquake ground velocity
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the ground velocity 
caused by perturbations 
of the rupture model 

the ground velocity caused 
by joint perturbations of 
the rupture model and 
errors in the Green’s 
functions



Source variabilities and Green function errors – Future applications

( ) ( ) ( ) ( ) ( ) ( )*2
1 11 1, , , ,j j

j
A A

g S g d dr w w w w
¢Ì Ì

¢ ¢ ¢= ò ò
x x

x x x x x x

The variability in ground velocity of the j-th channel (single component of
motion at a particular observation location) caused by perturbations of
the rupture model has the following variance:
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It depends on the spatial covariance of perturbations of the rupture model S11
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Source variabilities and Green function errors – Future applications
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Ø The primary use will be in seismic hazard studies to calculate the variability of synthetic seismograms given an 
ensemble of rupture models

Ø The variance of the ground motion is determined directly, skipping the step of calculating the ground motions 
of many rupture models.

The variability in ground velocity of the j-th channel (single component of
motion at a particular observation location) caused by perturbations of
the rupture model has the following variance:
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Future applications

It depends on the spatial covariance of perturbations of the rupture model S11
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Source variabilities and Green function errors – Future applications

Variability of the ground velocity 
due to the interaction between ds 
and dg has the following variance:
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The possibility of a nonzero covariance between ds and dg in the error interaction term opens an
interesting line of research. We can imagine that spatial variations of rigidity in the fault zone might cause
spatial variations of dg. These spatial variations of rigidity might also cause correlated variations in the
rupture process ds. It would be very interesting to look for such correlations in numerical simulations of
spontaneous rupture in heterogeneous media.

Future applications

This expression is new to seismic hazard research, because ds and dg might not
be small this variance can be significant



SUMMARY – 2
We have found a simple equation relating the variance in the ground motions predicted from a
given slip model to the spatial covariance function of the Green’s function errors.

This variability would be considered to be epistemic, as it is caused by unknowns in the Earth
structure, which could be improved by collection of more data.

The spatial covariance function of Green’s function errors can be recovered from analysis of small
earthquakes (like aftershocks) spanning the rupture surface.

For regions with sparse seismicity, it might be possible to define a spatial covariance function from
study of teleseismic amplitude and travel-time variations, and from coda-Q.

Summary



SUMMARY – 3

We have computed the expected variance (and the standard deviation) of ground motion

variations due to Green’s function errors for the Mw=6.1 2009 L’Aquila earthquake;

We have compared the inferred standard deviation with the misfit of synthetic and real

data for the Mw=6.1 2009 L’Aquila earthquake and we have discussed/discovered which

are the data over-fitted by the slip model.

Summary



SUMMARY – from LITERATURE (Yagi and Fukuhata 2011, Minson

et al 2013-2014, Duputel et al. 2012-2014…) 

• All the proposed studies develop a model-prediction covariance matrix that accounts for

the theory errors;

• These covariance matrix can be use to compute kinematic inversion;

• The improved modelling of Cp is expected to lead to more reliable images of the

earthquake rupture, that are more resistant to overfitting of data and include more realistic

estimates of uncertainty on inferred model parameters. Duputel et al. suggest that, if more

information is available about prior probability density describing the uncertainty of the

parameters, another more informative form of PDF can be used.

• This methodology can enable production of the next generation of source models that are

more resistant to over-fitting of data.



SUMMARY – from Spudich et al 2019

• We explicitly accept that the seismic-velocity structure of the medium has random three-
dimensional variations on all scales;

• The most general way to characterize these variations is through a statistical model from
the spatial covariance based on a combination of observations of empirical Green’s functions;

• We use observed aftershock seismograms to derive an empirical spatial-covariance matrix;

• As alternative methodology, instead of adopting a Bayesian approach to derive a kinematic
rupture models, we propose to adopt a cost function that is consistent with the covariance
(that is, to find rupture models that fit the data within the error bounds given by the variance
by using a chi-squared test) and this will reduce significantly the number of explored models.


