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A good recipe should include

Microphysical Velocity dependent
framework friction
(Adhesion theory of
friction) Slip dependent friction Time dependent
(static vs. kinetic) recovery of shear

strength



Outline:

First slot:

- Historical introduction to friction

- Overview of experimental apparatuses
- Adhesion theory of friction

- Fault healing and frictional aging

- Slip and Velocity dependence of friction

Second slot:

- Stability of frictional sliding

- Play with the spring-slider system

- From stable sliding to stick-slip in the laboratory

(a.k.a. how theory meets the experiments)



Historical introduction to friction

Leonardo Da Vinci
1452-1519

“friction produces double the amount
of effort if the weight be doubled’,

‘friction made by the same weight will
be of equal resistance at the
beginning of the movement though
the contact may be of different
breadths or lengths’

Hutchings, I. M. (2016). Leonardo da Vinci’s studies of friction. Wear,
360-361, 51-66. https://doi.org/10.1016/j.wear.2016.04.019



Historical introduction to friction

Guillame Amontons
(1699)
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« Amontons’s first law: The frictional force is independent of the size of the surfaces in contact.

« Amontons’s second law: Friction is proportional to the normal load.



Historical introduction to friction

Coulomb failure criterion: Failure in a rock will take place along a plane due to shear
stress acting on that plane.

C.A. Coulomb
(1736-1806)
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Historical introduction to friction

Byerlee’s Rule for Rock Friction (1978)
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Note that Byerlee’s law is just Coulomb Failure. It's simply a statement about
brittle (pressure sensitive) deformation and failure.
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Historical introduction to friction

Strong vs. weak faults

However a great amount of fault zones show
values of friction well below Byerlee’s rule
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Natural fault zones and shear localization
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damage zone core damage zone multiple cores

Faulkner, D. R., et al., (2010). A review of recent developments concerning the
structure, mechanics and fluid flow properties of fault zones. Journal of Structural

Geology, doi.org/10.1016/j.js9.2010.06.009



Natural fault zones and shear localization
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Empirical nature of friction laws — Laboratory experiments
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Empirical nature of friction laws — Laboratory experiments
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Empirical nature of friction laws — Laboratory experiments

The “Biax” Penn State Univesity, USA




Empirical nature of friction laws — Laboratory experiments

BRAVA (Brittle rock deformation versatile apparatus) Rome, Italy







Friction

Empirical nature of friction laws — Laboratory experiments
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Steady-state friction coefficient

Empirical nature of friction laws — Laboratory experiments
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Steady-state friction coefficient

Empirical nature of friction laws — Laboratory experiments
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A good recipe should include

Microphysical Velocity dependent
contact evolution friction
(Adhesion theory of
friction) Slip dependent friction Time dependent
(static vs. kinetic) recovery of shear

strength



Micromechanics of contacts — Adhesion theory of friction

Bowden and Tabor (1964)

Real area of contact between surfaces, A,, is much smaller than the apparent
area of the surface, A.
A>>A,

Ar~10% of A



Micromechanics of contacts — Adhesion theory of friction

Bowden and Tabor (1964)

A>> A,

Stress at contact junctions

C. Scholz, The mechanics of earthquakes and faulting, Chapter 2 (2019)

oA, = oy

Where:
o, is the normal load
O. is the indentation hardness of the material

Each contact is under a much higher normal
stress than the nominal stress o,

contact stress is:

A
Gc=GnA
r



Micromechanics of contacts — Adhesion theory of friction

- Bowden and Tabor (1964)
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Micromechanics of contacts — Adhesion theory of friction

Bowden and Tabor (1964)

A>> A
{
Normal force:
oAy = oy
T Shear force needed to shear the asperities is:
- T = TA;

1. IS a specific shear stress

The resulting coefficient of friction is:

T TcAy Tc

H:—: —

On OcAy Oc




Micromechanics of contacts — Adhesion theory of friction

Bowden and Tabor (1964)

A>> A
{
Normal force:
oAy = oy
T Shear force needed to shear the asperities is:
- T = TA;

1. IS a specific shear stress

The resulting coefficient of friction is:

T TcAr Tc

H:—: —

On OcAy Oc

This idea, of existence and yielding of microscopic contacts as the origin of
macroscopic friction, is one of the pillars of present-day understanding of friction.




Micromechanics of contacts — Adhesion theory of friction

« Although the adhesion theory of friction conceptualizes the physical essence of the

frictional interaction, in most cases it does not predict the correct value for p.

* This is because overcoming junction adhesion is usually not the only work done
in friction. Other processes such as interlocking, wear, surface production, ploughing and

dilational work (and many other) can contribute to the measured friction.

* Furthermore, A, is a minimum value, and it may increase and evolve with time, shear and shear rate.

» The adhesion theory of friction therefore can be used only as a conceptual framework.

* It is especially important for geological applications, where, in order to scale from laboratory to

geological conditions, we must understand the micromechanisms involved in the process.



A good recipe should include

Velocity dependent
Microphysical friction
contact evolution
(Adhesion theory of

friction)

Time dependent
recovery of shear
strength

Slip dependent friction
(static vs. kinetic)



Friction

Friction

Slip dependence of frictional strength
from static to kinetic friction

N Classical view
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Slip dependence of frictional strength
from static to kinetic friction

E. Rabinowicz 1951, 1956, 1958

JOURNAL OF APPLIED PHYSICS VOLUME 22, NUMBER 11 NOVEMBER, 1951

The Nature of the Static and Kinetic Coefficients of Friction

ErNEST RABINOWICZ
Lubrication Laboratory, Massachusetts Institute of Technology, Cambridge, Massachuseits

(Received May 23, 1951)

Fic. 5. Sketch of the apparatus.



Slip dependence of frictional strength — from static to kinetic
friction

Rabinowicz’s work solved a major problem with friction theory: he introduced
a way to deal with the singularity in going from s to g4

S ~ N e
u 4 ~N / R
g «—— d—> >G>
@ ®
L : © @
> F1G. 12. Idealized representation of a typical metallic junction
. in elevation and plan, the shaded region being the true area of
Sl contact. (a) and (c):—as formed during static loading. (b) and
I p (d) :—after sliding a distance s.

For solid surfaces in contact (without wear materials), the critical slip L represents
the slip necessary to break down adhesive contact junctions formed during ‘static’
contact and create a new population.



Slip dependence of frictional strength — from static to kinetic
friction

Rabinowicz’s work solved a major problem with friction theory: he introduced
a way to deal with the singularity in going from s to g4
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Slip

For solid surfaces in contact (without wear materials), the critical slip L represents
the slip necessary to break down adhesive contact junctions formed during ‘static’
contact and create a new population.



Slip dependence of frictional strength — from static to kinetic

friction

Rabinowicz’s work solved a major problem with friction theory: he introduced

A

a way to deal with the singularity in going from s to g4
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A good recipe should include

Velocity dependent
Microphysical friction
contact evolution
(Adhesion theory of

friction)

Time dependent
recovery of shear
strength

Slip dependent friction
(static vs. kinetic)



What all of these talking of asperities has to deal with
earthquakes?

Brace and Byerlee, 1966 - :

Stick-Slip as a Mechanism for
~\J<P =21k
Earthquakes
’

Abstract. Stick-slip often accompanies \ \
frictional sliding in laboratory experi-
ments with geologic materials. Shallow-
focus earthquakes may represent stick-
slip during sliding along old or newly
formed faults in the earth. In such a
situation, observed stress drops repre- ]
sent release of a small fraction of the _ \\
stress supported by the rock surround- !
ing the earthquake focus.
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The seismic cycle
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The seismic cycle

Time dependence of frictional strength — Frictional aging

We need a mechanism to reset frictional
strength between two seismic events
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Time dependence of frictional strength — Frictional aging

Coulomb, 1785

Table 9.1
H ““ s g T A+mT
Time dependence of “static” friction (Gme of repose, min) _ (static frictionfoce. 1
Aging of frictional contacts w3 s
v y o2s
Ve 26 1,036
VI 60 1,186
VIF 960 1,535

static friction of two pieces of well-worn oak lubricated with tallow.

Coulomb, Oak with tallow, 1785
1500 L i
o
(]
O
o
L 1000 L
1 10 100 1000

Time (min)



Time dependence of frictional strength — Frictional aging

Contacts grow (age) with elapsed time

Dieterich and Kilgore, 1994 PAGEOPH



Time dependence of frictional strength — Frictional aging

Shear Stress
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Contacts grow (age) with elapsed time

Slide — hold — slide test in the laboratory
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Coefficient of friction (u)
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Time dependence of frictional strength — Frictional aging

Contacts grow (age) with elapsed time

Slide — hold — slide test in the laboratory
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Coefficient of friction (u)
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Time dependence of frictional strength — Frictional aging

Contacts grow (age) with elapsed time

Slide — hold — slide test in the laboratory
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COefficient of friction (u)

Time dependence of frictional strength — Frictional aging

Contacts grow (age) with elapsed time

Slide — hold — slide test in the laboratory
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Time dependence of frictional strength — Frictional aging
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Contacts grow (age) with elapsed time

Major factors that controls frictional healing:

Fault gouge mineralogy, in other words the shape of
minerals (platy vs. granular)
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Time dependence of frictional strength — Frictional aging

Contacts grow (age) with elapsed time

Major factors that controls frictional healing:

Fault gouge mineralogy, in other words the shape of

minerals (platy vs. granular)
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Time dependence of frictional strength — Frictional aging

Contacts grow (age) with elapsed time

Major factors that controls frictional healing:

Fault gouge mineralogy, in other words the shape of

minerals (platy vs. granular)
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Time dependence of frictional strength — Frictional aging

Contacts grow (age) with elapsed time

Major factors that controls frictional healing:

- Shear stress (Karner and Marone, 2001)

- Humidity and fluids (e.g. Frye, 2002)

- Dynamic changes in normal stress (Richardson 1999)

- Shear velocity (Marone 1998)

- Physico-chemical reactions (e.g. Scuderi et al., 2014)

- Degree of granular consolidation (e.g. Bos and Spiers,
2002; Niemeijer et al., 2008)

- And much more



Time dependence of frictional strength — Frictional aging

Contacts grow (age) with elapsed time

Nonetheless, this theoretical framework it is consistent with
observations repeating earthquakes

10

Calaveras Fault (CA, USA) repeating earthquakes
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A good recipe should include

Velocity dependent

Microphysical friction
contact evolution
(Adhe?rliczzc’szc)eory of Slip dependent friction Time dependent
(static vs. kinetic) recovery of shear

strength



Frictional strength

The seismic cycle

Velocity dependence of frictional strength

We need a mechanism to allow frictional
weakening during slip acceleration to
allow earthquake nucleation
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Velocity dependence of sliding friction

Shear Stress

|

Gouge Layers

Velocity step experiments
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Velocity dependence of sliding friction

Velocity step experiments

n N
N
|

Velocity step sequence
V =11to 1000 um/s
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Velocity dependence of sliding friction

Velocity step experiments

Shear velocity [um/s]

6

Velocity strengthening

Friction increases with increasing

velocity, indicative of aseismic creep.
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Shear velocity [um/s]

setting the stage for an instability.
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Velocity weakening

Friction decreases with increasing velocity,

I 0.048

- 0.046

r 0.044

°
o
5
)

- 0.040

r0.038

— Velocity

r0.036

r 0.034

r0.032

6.6

6.8

7.0 7.2 7.4
Displacement (6) [mm]

Coefficient of friction (u)



Shear Stress

How can we relate measurement of:

(1) Static friction that increases with time

(2) Kinetic friction that changes with velocity

4

Time

To model repetitive stick-slip frictional
sliding we need a constitutive law that

can describe slip weakening to

promote unstable failure, but also

frictional healing to reset strength

between events.



Rate(v) and state(0) friction constitutive equations

1) Friction law

0.8

0.7 A fl— : e
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0 2 05
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Dieterich, 1978 PAGEOPH , 1979a,b JGR " 02
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Rate(v) and state(0) friction constitutive equations

1) Friction law
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Rate(v) and state(0) friction constitutive equations

1) Friction law ) Velocity Strengthening (aseismic creep)
Second order variations 5 v, vy,
| | 1 ::j
T(@ V) vV vV 9 *2 = aln (V/vy) b In (v/v)
) L
———==u +aln| — |+bln| - & T R
o - 0
o v, D s 1 LT
\ | Displacement
! Velocity Weakening (potentially unstable)
Direct effect(ay
Slip rate dependent increase in shear - bln (v/vo
o0 aln (v/vy)
resistance (non-linear viscous). 232
e — N -
§ (a-b) In (v/v,)

Displacement



Rate(v) and state(0) friction constitutive equations

1) Friction law ) Velocity Strengthening (aseismic creep)
Second order variations 5 v, vy,
| | 1 ,::j
T(@ V) vV vV 9 *23 aln (v/vy) b In (v/v)
) L
———==u +aln| — |+bln| - & T R
o] - 0
o V, D S | T
\ | Displacement
eloci eakenin otentially unstable
! Velocity Weakening (potentially unstable)
Evolution effect(o):
- Slip dependent evolution in contact area £ o oln (v/vo)
o aln(v/v,
- Time dependent increase in contact area 23
e — N ] -
§ (a-b) In (v/v,)

D. = Critical slip distance, defined as the distance required to renew a

Displacement

population of asperity contacts.

0 = State variable, describes the “state” of the contacts and it is related with

the characteristic contact lifetime (it has units of time).



Rate(v) and state(0) friction constitutive equations

1) Friction law ) Velocity Strengthening (aseismic creep)
Second order variations 5 v, vy,
| | 1 ::j
S g bin (v/vo)
T(@;V) V VOH @ = aln (v/vy) niv/iv
——=u +aln| — |+bln| —— £ 5. ot
o B 0
o V, D s 1 oL

Displacement

, Velocity Weakeni iall tabl
2) Evolution law elocity Weakening (potentially unstable)

6 - v6 Aging Law (or Dieterich law) é it bin{v/vo

dt D This formulation allow the state (0), and E R AN N
thus friction, to evolve even for truly g (a0 In (v/vo)
stationary contact, when V=0. That is, it Displacement

can be used to model frictional healing.



Rate(v) and state(0) friction constitutive equations

1) Friction law ) Velocity Strengthening (aseismic creep)

Second order variations

S Voo VoVe
| A | ::j
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C [}
S (a-b) In (v/v,)
Slip Law (or Ruina law) Displacement
@ _ _V_H ﬁ Emphasize the importance of slip and slip velocity in

dt DC Dc the evolution of friction rather than time.



Rate(v) and state(0) friction constitutive equations

1) Friction law ) Velocity Strengthening (aseismic creep)
Second order variations 5 v, sy,
| l | ,::j
S = bIn (v/v,)
T(@,V) v VOH E 2 aln(v/vy) ‘ niviv
——=u +aln| — |+bln| —— £ 5. ot
o - 0
o V, D s 1 LT

Displacement

Velocity Weakening (potentially unstable)
2) Evolution law

g bln (v/v)
T aln(v/vy)
@ —1— ﬁ Aging Law (or Dieterich law) 22
dt D g 1IN -
Which one ? Y ety
d@ VG VH | | Displacement
—=——1In| — Slip Law (or Ruina law)
dt D

Ampuero, J. P., & Rubin, A. M. (2008). Earthquake nucleation on rate and state faults — Aging and slip laws.
Journal of Geophysical Research, 113(B1), B01302. https://doi.org/10.1029/2007JB005082



Rate(v) and state(0) friction constitutive equations

1) Friction law ) Velocity Strengthening (aseismic creep)
Second order variations 5 v, vy,
| l | ::j
O = b In (v/vy)
T(@,V) v VOH E 2 aln(v/vy) ‘ n
—=U, +aln| — |+bln| — £ D, ot
o V, D S 1| . pern
Displacement
2) Evolution law Velocity Weakening (potentially unstable)
ﬁ —1— ﬁ Aging Law (or Dieterich law) g bln (v/v,)
dt D £ aln(v/vy)
c :g g
do D § — N T, @b nwvivy|
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(i.e. shear at constant velocity) dt =0 Resultlng n HSS v
Displacement
N Algs
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Rate(v) and state(0) friction constitutive equations

1) Friction law

0

n

2) Evolution law

do_, [ve

dt~ (D

Second order variations
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Is (a-b) a universal parameter?

Is it a material property?

The answer is NO.
(a-b) greatly varies depending on a variety of
boundary conditions, fault mineralogical composition

and fault maturity (i.e. strain localization)

Scaling of rate parameters derived in the laboratory to seismic faulting

|dentify the mechanical conditions and constitutive properties that distinguish

stable from unstable sliding.

Determine these friction parameters for a range of conditions, with the hope
that key processes can be identified and appropriate scaling relations can

be derived to connect the laboratory data with field observations



Major factors controlling (a-b) and frictional stability
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Major factors controlling (a-b) and frictional stability
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Coefficient of Friction, u
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Major factors controlling (a-b) and frictional stability

The effect of strain localization — regimes 1 to 2

(quartz fault gouge example)
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Major factors influencing (a-b) and frictional stability

The effect of strain localization — regimes 1 to 2
(quartz fault gouge example)
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Major factors influencing (a-b) and frictional stability

The effect of strain localization — regimes 1 to 2
(quartz fault gouge example)
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Major factors influencing (a-b) and frictional stability

The effect of strain localization — regimes 1 to 2
(quartz fault gouge example)
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Major factors influencing (a-b) and frictional stability

The effect of strain localization — regimes 1 to 2
(quartz fault gouge example)
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Major factors influencing (a-b) and frictional stability

The effect of strain localization — regimes 1 to 2
(quartz fault gouge example)
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Major factors influencing (a-b) and frictional stability

The effect of strain localization — regimes 1 to 2

(quartz fault gouge example)
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Scaling of the critical slip
distance for seismic faulting
with shear strain in fault zones

Chris Marone* & Brian Kilgoret

1993, Nature

Major factors influencing (a-b) and frictional stability

The effect of strain localization — regimes 1 to 2
(quartz fault gouge example)
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Marone, 1998

Beeler et al.,

1996 JGR

Major factors influencing (a-b) and frictional stability

The effect of strain localization — regimes 1 to 2
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Rocchetta fault zone, Italy
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Rocchetta fault zone
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Major factors controlling (a-b) and frictional stability
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One of the main
mechanism to pass from
velocity strengthening to
weakening is associated
to shear localization in
quartzo-feldspatic and
carbonate rocks.

By no means this is the
only mechanism.



Major factors controlling (a-b) and frictional stability
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Increasing in temperature usually causes a

transition from velocity strengthening to velocity

weakening. As temperature continues to

increase ductility kicks in and frictional stability

comes back to velocity strengthening

Chester and Higgs, 1992
Banpied et al., 1995
Verberne et al., 2015
Niemeijer and Spiers, 2007



Major factors controlling (a-b) and frictional stability

Fluid pressure
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Increasing fluid pressure causes a
transition from velocity strengthening
to weakening in carbonate bearings
rocks. We also observe a strong

dependency on shear velocity.

However, data are scarse !!



Major factors controlling (a-b) and frictional stability
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Major factors influencing (a-b) and frictional stability

The effect of strain localization — regime 3

Phyllosilicate rich fault zones
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Coefficient of Friction (u)
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Major factors influencing (a-b) and frictional stability

The effect of strain localization — regime 3

lllite rich fault gouge
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(1) Strain weakening to reach
steady state friction (uss)

(2) During velocity step test
friction strongly increases

with velocity.



Major factors influencing (a-b) and frictional stability

The effect of strain localization — regime 3

Fault strength and shear fabric
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Major factors influencing (a-b) and frictional stability

The effect of strain localization — regime 3
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Zuccale fault zone, Elba Island, Italy

top of the fault

Collettini et al., 2009 Nature
Collettini et al., 2011 EPSL



Zuccale fault zone
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Synoptic view of fault zone strength and slip behavior
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Load and Time Dependence of Interfacial Chemical
Bond-Induced Friction at the Nanoscale
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ABSTRACT: Earthquakes are generally caused by unstable stick—slip
motion of faults. This stick—slip phenomenon, along with other frictional /‘/l/l/l/l/
properties of materials at the macroscale, is well-described by empirical rate

and state friction (RSF) laws. Here we study stick—slip behavior for
/LW/VW/VV\/VV‘/’- S

nanoscale single-asperity silica—silica contacts in atomic force microscopy
loading

experiments. The stick—slip is quasiperiodic, and both the amplitude and
point
/W/W\vavvvvw velo city

spatial period of stick—slip increase with normal load and decrease with the
increases with the temporal period logarithmically, and decreases with /L

Lateral force

loading point (i.e., scanning) velocity. The peak force prior to each slip
velocity logarithmically, consistent with stick—slip behavior at the macro-
scale. However, unlike macroscale behavior, the minimum force after each
slip is independent of velocity. The temporal period scales with velocity in a Lateral displacement
nearly power law fashion with an exponent between —1 and —2, similar to P
macroscale behavior. With increasing velocity, stick—slip behavior transitions
into steady sliding. In the transition regime between stick—slip and smooth sliding, some slip events exhibit only partial force
drops. The results are interpreted in the context of interfacial chemical bond formation and rate effects previously identified for
nanoscale contacts. These results contribute to a physical picture of interfacial chemical bond-induced stick—slip, and further
establish RSF laws at the nanoscale.




Mass transfer Reaction softening decrease friction

Fig. 8. Schematic representation of reaction softening with increasing strain. a) At the onset of deformation fracturing associated to cataclasis increases permeability favoring
the influx of fluids (blue arrows) into the fault zone. b) Fluids react with the fine-grained cataclasite promoting dissolution of the strong granular phases and precipitation
of phyllosilicates (green lines). ¢) At high strains the microstructure consists of an interconnected phyllosilicate-rich network where the deformation is predominantly
accommodated by frictional sliding along the (001) phyllosilicate lamellae. The phyllosilicate network is also a low-permeability horizon for transversal fluid flow favoring
the development of fluid overpressure testified by foliation parallel veins with crack-and-seal texture (dark-blue). Key-references on the processes highlighted in this picture
are reported on the main text.



