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Earthquake cycle modeling: definition

Scope:

Fault slip and deformation processes at time scales spanning several
major earthquakes on a given fault zone

Multi-scale modeling: includes seismic and aseismic processes

(earthquake rupture, aftershocks, postseismic slip, background
seismicity, interseismic loading, foreshocks, nucleation)

+ other aseismic fault processes: slow slip events



Earthquake cycle modeling

Earthquake Dynamic rupture simulation
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Why model the earthquake cycle?

* To study the earthquake cycle:
* Interpret geodetic observations in the framework of current friction laws
* Infer friction properties from geodetic observations
* Develop implications of new friction laws
* Add physics-based constraints on seismic hazard assessment



Why model the earthquake cycle?

Example: infer friction properties from geodetic observations (Ceferino et al 2019)

Observational constraint:

seismic coupling map Rate-and-state
inferred from GPS data earthquake cycle
modeling
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Observations

Why model the earthquake cycle?

Example: Add physics-based constraints on seismic hazard assessment (Ceferino et al 2019)

& Trench

== Sections

80

| Previous ruptures
] study region

Conv. rates (mm/yr)

62,
50 50 100 150 200

78

(a) From GPS

<&~ Trench
GPS (2008-2013)
0.00-0.20
0.20-0.40
0.40-0.60
0.60-0.80
0.80- 1.00

50 50 100 150 200

78'W \ 76

Models constrained by observations

- Trench

Asperities

Previous ruptures

0.60-1.00 (VS)
1.00 - 1.25 (VW)
1.25-1.50 (VW)
1.50- 1.75 (VW)
1.75 - 2.00 (VW)

.

Noze

78°W

(c) Model B-2

12°
12°5

- Trench
8-2(1501.8)

7} vW regions B-2

50

0.0-02
0.2-04
0.4-06
06-0.8
0.8-1.0

50 100 150 200 km
80! 78'W

e

Annual exceedance rates

5.0E-02

5.0E-03

5.0E-04

Model statistics

=+ Historical

75

8.0 85
Magnitude (Mw)

Effect on hazard map

(a) Only historical Data

50 100 Isnzmhn\ er
Faw 7

(b) Synthetic & historical Data

N

10

e

\

|~ Trench
P[PGA>0.4g] (5 & H)
0.00-0.01

50

0.01-0.02

0.02-0.03
0.03-0.04
0.04-0.05

50 1oo1snzoukm\
[ 78w 76" W




Why model aseismic slip?

Fault slip induced by fluid injection

Rate-and-state friction + pressure diffusion modeling
(Larochelle et al 2019 in prep.)
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Why model the earthquake cycle?

* To get “initial stresses” for earthquake simulations that are
mechanically consistent with long-term processes

* Dynamic rupture simulations of single earthquakes (previous lectures)
assume initial stresses arbitrarily

e Earthquake cycle models provide stresses organized spontaneously
throughout the long-term activity of the fault (multiple earthquakes)



Dynamic model of the 2016 Mw 7.8 Kaikoura earthquake
A rupture cascade on weak faults

Ulrich, Gabriel, Ampuero, Xu (2018)



Loading of natural faults

Fault loaded by deep creep

Stress
concentration



2015, Mw 7.8 Gorkha, Nepal earthquake
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Intermediate-size event unzipping part of the lower
edge of the coupled zone
(Junle Jiang, Caltech)
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Basic earthquake cycle problem

* Ingredients:

Fault embedded in an elastic crust

* Fault zone is thin: slip on a pre-existing surface

Fault geometry is prescribed and fixed

The relation between fault stress and slip is governed by a friction law

Initial state
* Tectonic loading (remote or creep) + other transient loading

 Mathematical formulation:
* Linear elasticity equations
* Non-linear boundary conditions (friction)
* Initial conditions

* Qutputs:
» Spatio-temporal evolution of slip (on each fault point, at each time) over
time scales that span several earthquake cycles

* Seismicity patterns
* Surface deformation



Example questions addressed by
earthquake multi-cycle modeling

e Earthquake nucleation:
* How much precursory aseismic slip is expected?
* Where do earthquakes tend to nucleate?
* How does a fault respond to external stimuli (tides, waves, fluids)?

e Earthquake rupture:
* Is this fault seismic or aseismic?
* How fast does a slow slip event migrate?
* How does slip and rupture duration scale with earthquake size?
* How to start a single-earthquake dynamic rupture simulation?

* Seismicity patterns:
* How does seismicity organize in a fault network?

* How do tremors migrate?
* How are foreshocks related to aseismic slip?



Quasi-DYNamic
earthquake simulator

https://github.com/ydluo/qgdyn
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https://github.com/ydluo/qdyn

QDYN is an open-source software for earthquake cycle modeling

Hosted in Github https://github.com/vdluo/adyn

Pull requests Issues Marketplace Explore
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i docs QDYN release 2.2.0 (#34) 12 days ago

i examples QDYN release 2.2.0 (#34) 12 days ago


https://github.com/ydluo/qdyn

We welcome your feedback!

User support: post an “issue” on Github, the team will address it
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® There are some difference between the results calculated by serial code and parallel (16
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© slip output inconsistency (o
#17 opened on Oct 15, 2018 by ydluo

® Compatibility with older version of Matlab (J6
#11 opened on Jul 6, 2018 by ydluo
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# License
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4. Running simulations
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6. Tutorials

Overview

QDYN is a boundary element software to simulate earthquake cycles (seismic and
aseismic slip on tectonic faults) under the quasi-dynamic approximation (quasi-static
elasticity combined with radiation damping) on faults governed by rate-and-state
friction and embedded in elastic media.

QDYN includes various forms of rate-and-state friction and state evolution laws, and
handles non-planar fault geometry in 3D and 2D media, as well as spring-block
simulations. Loading is controlled by remote displacement, steady creep or
oscillatory load. In 3D it handles free surface effects in a half-space, including normal



Model assumptions: rheology of the crust

* Linear elastic half-space

e Uniform elastic properties or a low rigidity layer around the fault
* Thermal/fluid diffusion within the fault zone

* Missing: heterogeneous media, viscosity, plasticity/damage



Model assumptions: fault geometry

 Slip on pre-existing surfaces:
inelastic deformation localized in
infinitely thin fault planes

* Currently in QDYN: single fault with
prescribed depth-dependent dip,
fixed rake

e Future version: arbitrary fault
geometry (non-planar faults,
network of multiple faults)

Longitude (deg)

Galvez et al (PAGEOPH 2019)



Model assumptions:
Quasi-dynamic approximation

Fault embedded in an elastic crust
- linear elastodynamics equations (F=ma & Hooke’s law)

Quasi-dynamic approximation: includes only dynamic stress changes due to
waves radiated in the direction normal to the fault plane (“radiation damping”,
Rice 1993)

U

At=———V
¢ 2Cq

Convenient: lower computational cost and program complexity
—> simulation of multiple earthquake cycles with many fault cells

Generally adequate approximation.

* Quantitative differences: smaller stress drop, rupture speed and slip velocity than fully
dynamic simulations.

* Qualitative differences if friction has severe velocity-weakening (Thomas et al 2014)



http://onlinelibrary.wiley.com/doi/10.1002/2013JB010615/abstract

Radiation damping: derivation

A plane S wave with particle displacement
u(t —x/cg)

propagating in the direction x normal to a fault plane carries the following dynamic
shear stress change (Hooke’s law + chain rule):

du  pou

MEC ¢ Ot
Next to the fault, displacement = half slip :

T =

du 4
a2
Hence, More generally, for SH waves radiated
AT = — 2” vV at an angle 8 from the fault normal:
CS

At = —LV cos(0)
CS
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Model assumptions: rate-and-state friction

Evolution of friction coefficient
during velocity step experiment

e vo—>| < n— ¢ o >
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Phenomenological friction law developed from lab
experiments at low velocity

v L

g — F(V,0) = f* 4 alog (K) +blog (V*H)

non-linear viscosity + evolution effect

State evolution law, several flavors:

Ageing law =1 —V—Le
- j_ Ve, (Ve
Slip law 0 = ; log(L)

Stability of slip depends on the sign of (a-b):
* a — b > 0:velocity strengthening, stable
* a — b < 0:velocity weakening, potentially unstable



Model assumptions: rate-and-state friction
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Model assumptions: initial conditions

* Need to prescribe slip velocity V and state
variable O at t=0

* The long-term behavior of the fault does not
strongly depend on this initial condition

* Usual procedure:
1. Give an initial “kick” to the system such that

VI _ 4

V (mfs) L
2. Run several “warm-up cycles” to erase the

effect of the arbitrary initial conditions




Model assumptions: tectonic loading

* Fault extends infinitely beyond the
seismogenic zone

* Fault is driven by

 steady creep (constant slip velocity)
on its deeper extension

* + imposed displacements far from the
fault

e + arbitrary external loads, e.g.
oscillatory loading induced by tides,
fluid injection




Formulation: spring-block system
low

T

e Equation of motion:
7(t) = —nv() — K(d(t) — dioqa(®)) fa.1
where
T =shear stress at the base of the block,
d, v = displacement and velocity of the block
djoaq = l0ading point displacement
n = u/2c,=impedance
K = stiffness of the spring
* Friction:
(t) = of (v,0)
6 =gv,06) Eq. 3



Formulation: time integration

Reduction to a system of Ordinary Differential Equations

Set Eq. 1 = Eq. 2 and take the time derivative:

. Ug(v; 9) + K(U - vload)

of
055 (v,0) +n Eq. 4
+ equation 3 6 =g,0))
Standard ODE form:
X =fX) where X = (v, 0)

Given initial conditions v(0) and 8(0), solve the ODE system to get v(t) and 8(t).
Standard ODE solvers, e.g. Runge-Kutta with adaptive time step



Typical spring-block cycle
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Typical spring-block cycle

_ og(v,0) + K(v — v10qq)

10" : : : : g
o5, W, 0)+1

Denominator = direct effect + radiation damping
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Rubin and Ampuero (2005)



Formulation: two spring-blocks system

 System of equations of motion:
71 = Nv1 — K11(dy — dioaa) —|K12(d2 — dipaa)
T, = Ny — Kp2(dy — dioaa) —|K21(d1 — dipaa)
elastic coupling Bﬁen blocks
* Define X = (vq,04,15,05)
* Therest is the same ...




Formulation: continuum fault

* Boundary element method: fault discretized by a grid of N
rectangular cells

» System of N equations of motion:
T = —nv; —| % Kij(dj — dipaa)

elastic coupling (all to all)
* K;j is the stress on cell i due to a unit slip on cell
* The matrix K is computed analytically (Okada’s formulas)
* The rest is the same
* The matrix multiplication Kd dominates the computational cost

e Speed-up of Kd computation by FFT in regular grids, by H-matrix
in non-regular grids



Resolution length

Smallest length of the problem: minimum slip
localization length and the size of the process zone
at the rupture tip.

Log(V) - 5 For the ageing law:
: - Ly = uD./bo
100 8 6 40 20 0 To guarantee good numerical resolution the cell size
Distance along fault Ax must be much smaller than L,

Rubin and Ampuero (2005)



Resolution length

Smallest length of the problem: minimum slip
localization length and the size of the process zone
at the rupture tip.

For the ageing law:
Ly = uD./bo

To guarantee good numerical resolution the cell size
Ax must be much smaller than L,

log V (m/s)

Distance along fault

Rubin and Ampuero (2005)



Slip/ L

Resolution length
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Distance from the rupture tip
normalized by L,

Smallest length of the problem: minimum slip
localization length and the size of the process zone
at the rupture tip.

For the ageing law:
Ly = uD./bo

To guarantee good numerical resolution the cell size
Ax must be much smaller than L,

Rubin and Ampuero (2005)



Process zone in rate-and-state friction
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Rubin and Ampuero (2005)

From lecture 3: process zone size
Ay = ZMGC/(TS - Td)z

Rate-and-state behaves as slip-weakening near
the rupture front, with equivalent properties:

D,=LIn(V/V*) ~20L

T, — T4 = baln(V/V™)

2

1 /4
G, = 2 boL In (W)
—> Process zone size:
L
Ay ~ ‘u_ =

~ =1L
bo b



Two flavors of rate-and-state friction

5 - ) i -
i Rate increases | :
_g e i Rate increases |
~ 0 10% .
4 ¥io0+* Rate decreases | :,:;},5' Rate decreases |
-5 a [ 5 ] /I/ f
] 1 /1 o+
] Aging law 1 Slip law
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Ageinglaw: 0 = 1 —V8/L

D.=LIn(V/V*)

Slip law: 8 = —V8/Llog(Vé/L)

D. =L
Ay = Ly /log (Vl)

It shrinks = more challenging to resolve



Two flavors of rate-and-state friction

1
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Ageing and slip laws predict radically different nucleation processes



Other important lengths

Log(V) 4 Log(V)

I I I I ) T |
T T T
I I I |
T T T T T T

|
=
o
i
o
®
I
-
™

100 80 60 40 20 O 100 80 60 40 20 0O
Distance along fault Distance along fault

— (b’_‘i)a = bfaLb (Rice, 1993, also called h*)

LC

L. =ulL—2 —(”)ZL (Rubin and A 2005)
e b ubin and Ampuero,

b—a

Do not confuse process zone with the other characteristic sizes, they are larger!



Example: brittle asperity isolated in a creeping fault zone

An isolated brittle asperity (v-weakening) within a creeping fault (v-strengthening).
Constant slip velocity Vyaeground imposed far from the asperity.
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Example: brittle asperity isolated in a creeping fault zone

Maximum
slip velocity

aseismic
nD.
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Migrating swarms: asperity interactions
mediated by creep transients
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Migrating swarms:
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Latitude

Slow slip and tremor migration patterns

km Along Strike
3
K
E

Non-volcanic tremor migration
patterns in Cascadia, USA

Tremor migrates slowly along
strike ( A5 ~10 km/day) tracking
the front of the slow slip event

Episodic tremor swarms
propagate backwards, faster

( ‘ ~ 100 km/day)

Houston et al (2010)



Simulations of slow slip and tremor
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