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Earthquake cycle modeling: definition

Scope:
Fault slip and deformation processes at time scales spanning several 
major earthquakes on a given fault zone
Multi-scale modeling: includes seismic and aseismic processes 
(earthquake rupture, aftershocks, postseismic slip, background 
seismicity, interseismic loading, foreshocks, nucleation)
+ other aseismic fault processes: slow slip events



Earthquake cycle simulations

Galvez et al 
(2014)

Earthquake cycle modeling

Luo and Ampuero 



Historical seismicity in the 
Peru subduction zone

(Villegas-Lanza et al  2016)



Villegas-Lanza et al (2016)

Geodetic data (GPS) Inferred seismic coupling



Why model the earthquake cycle?

• To study the earthquake cycle: 
• Interpret geodetic observations in the framework of current friction laws
• Infer friction properties from geodetic observations
• Develop implications of new friction laws
• Add physics-based constraints on seismic hazard assessment



Why model the earthquake cycle?
Example: infer friction properties from geodetic observations (Ceferino et al 2019)

Observational constraint: 
seismic coupling map 
inferred from GPS data 

Rate-and-state 
earthquake cycle 
modeling Tuning friction parameters à Family of plausible models



Why model the earthquake cycle?
Example: Add physics-based constraints on seismic hazard assessment (Ceferino et al 2019)
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Fault slip induced by fluid injection
Rate-and-state friction + pressure diffusion modeling
(Larochelle et al 2019 in prep.)

Aseismic slip

Episodic 
seismic slip

Why model aseismic slip?



Why model the earthquake cycle?

• To get “initial stresses” for earthquake simulations that are 
mechanically consistent with long-term processes
• Dynamic rupture simulations of single earthquakes (previous lectures) 

assume initial stresses arbitrarily 
• Earthquake cycle models provide stresses organized spontaneously 

throughout the long-term activity of the fault (multiple earthquakes)



Dynamic model of the 2016 Mw 7.8 Kaikoura earthquake
A rupture cascade on weak faults

Ulrich, Gabriel, Ampuero, Xu (2018)



Loading of natural faults

Stress 
concentration

Fault loaded by deep creep

Wdowinsky



2015, Mw 7.8 Gorkha, Nepal earthquake

Seismic coupling 
inferred from 20 years of GPS data
Ader et al (2012)

Stressing rate



Extracted from Jiang and Lapusta’s dynamic earthquake cycle simulations.

Slip velocity:

Locked

Aseismic

Seismic

Average stress

Peak slip velocity



Nucleation

Propagation

Arrest

Intermediate-size event unzipping part of the lower 
edge of the coupled zone

(Junle Jiang, Caltech)

Pre-stress



Basic earthquake cycle problem
• Ingredients:

• Fault embedded in an elastic crust
• Fault zone is thin: slip on a pre-existing surface
• Fault geometry is prescribed and fixed
• The relation between fault stress and slip is governed by a friction law
• Initial state
• Tectonic loading (remote or creep) + other transient loading

• Mathematical formulation: 
• Linear elasticity equations 
• Non-linear boundary conditions (friction)
• Initial conditions

• Outputs:
• Spatio-temporal evolution of slip (on each fault point, at each time) over 

time scales that span several earthquake cycles
• Seismicity patterns
• Surface deformation



Example questions addressed by 
earthquake multi-cycle modeling

• Earthquake nucleation:
• How much precursory aseismic slip is expected?
• Where do earthquakes tend to nucleate?
• How does a fault respond to external stimuli (tides, waves, fluids)?

• Earthquake rupture:
• Is this fault seismic or aseismic?
• How fast does a slow slip event migrate?
• How does slip and rupture duration scale with earthquake size?
• How to start a single-earthquake dynamic rupture simulation?

• Seismicity patterns:
• How does seismicity organize in a fault network?
• How do tremors migrate?
• How are foreshocks related to aseismic slip?



Quasi-DYNamic
earthquake simulator
https://github.com/ydluo/qdyn

https://github.com/ydluo/qdyn


QDYN is an open-source software for earthquake cycle modeling

Hosted in Github https://github.com/ydluo/qdyn

https://github.com/ydluo/qdyn


We welcome your feedback!

User support: post an “issue” on Github, the team will address it





Model assumptions: rheology of the crust 

• Linear elastic half-space 
• Uniform elastic properties or a low rigidity layer around the fault
• Thermal/fluid diffusion within the fault zone
• Missing: heterogeneous media, viscosity, plasticity/damage



Model assumptions: fault geometry

• Slip on pre-existing surfaces: 
inelastic deformation localized in 
infinitely thin fault planes 

• Currently in QDYN: single fault with 
prescribed depth-dependent dip, 
fixed rake
• Future version: arbitrary fault 

geometry (non-planar faults, 
network of multiple faults)

Galvez et al (PAGEOPH 2019)



Model assumptions:
Quasi-dynamic approximation 

• Fault embedded in an elastic crust 
à linear elastodynamics equations (F=ma & Hooke’s law)

• Quasi-dynamic approximation: includes only dynamic stress changes due to 
waves radiated in the direction normal to the fault plane (“radiation damping”, 
Rice 1993)  

Δ" = − %
2'(

)
• Convenient: lower computational cost and program complexity 

à simulation of multiple earthquake cycles with many fault cells
• Generally adequate approximation. 

• Quantitative differences: smaller stress drop, rupture speed and slip velocity than fully 
dynamic simulations. 

• Qualitative differences if friction has severe velocity-weakening (Thomas et al 2014)

http://onlinelibrary.wiley.com/doi/10.1002/2013JB010615/abstract


Radiation damping: derivation
A plane S wave with particle displacement

! " − $/&'
propagating in the direction $ normal to a fault plane carries the following dynamic 
shear stress change (Hooke’s law + chain rule):

( = * +!+$ = − *
&'
+!
+"

Next to the fault, displacement = half slip :

+!
+" =

,
2

Hence,
./ = − 0

123
4

More generally, for SH waves radiated 
at an angle 5 from the fault normal:

Δ( = − *
2&'

, cos(5)



Model assumptions: rate-and-state friction

Phenomenological friction law developed from lab 
experiments at low velocity

!
" = $(&, () = $∗ + , log &

&∗ + 0 log &∗(
1

non-linear viscosity + evolution effect

State evolution law, several flavors:

Ageing law (̇ = 1 − 56
7

Slip law (̇ = − 56
7 log

56
7

Stability of slip depends on the sign of (a-b):
• , − 0 > 0 : velocity strengthening, stable
• , − 0 < 0 : velocity weakening, potentially unstable

Evolution of friction coefficient
during velocity step experiment



Variant with two velocity cut-offs !" and !#:

$ !, & = $∗ − * log 1 + !"! + 0 log 1 + !#&1

Apparent a−b = 4566
4789: is not constant, it depends on 

:

Weakening at low slip rate ! ≪ !#
Strengthening at intermediate slip rate V" ≫ ! ≫ !#
àslow slip events

Model assumptions: rate-and-state friction
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Model assumptions: initial conditions

• Need to prescribe slip velocity V and state 
variable θ at t=0
• The long-term behavior of the fault does not 

strongly depend on this initial condition
• Usual procedure: 

1. Give an initial “kick” to the system such that 
!(#)%(#)

& > 1
2. Run several “warm-up cycles” to erase the 

effect of the arbitrary initial conditions

Steady-state



Model assumptions: tectonic loading

• Fault extends infinitely beyond the 
seismogenic zone 
• Fault is driven by 

• steady creep (constant slip velocity) 
on its deeper extension

• + imposed displacements far from the 
fault

• + arbitrary external loads, e.g. 
oscillatory loading induced by tides, 
fluid injection



Formulation: spring-block system

• Equation of motion:  
! " = −%& " − ' ( " − ()*+, "

where 
! =shear stress at the base of the block, 
(, & = displacement and velocity of the block
()*+, = loading  point displacement
% = ./212= impedance
' = stiffness of the spring

• Friction: 
!(") = 56(&, 7)
7̇ = 9(&, 7)

Eq. 1

Eq. 2
Eq. 3

()*+,(")



Formulation: time integration
Reduction to a system of Ordinary Differential Equations 
Set Eq. 1 = Eq. 2 and take the time derivative:

"̇ = −%& ", ( + * " − "+,-.
% /0/" ", ( + 1

+ equation 3 (̇ = &(", ()) 
Standard ODE form: 

4̇ = 0(4) where 4 = (", ()
Given initial conditions " 0 and ( 0 , solve the ODE system to get " 6 and ((6).
Standard ODE solvers, e.g. Runge-Kutta with adaptive time step

Eq. 4



Typical spring-block cycle

Rubin and Ampuero (2005)

Steady-state

Steady-state



Typical spring-block cycle

Rubin and Ampuero (2005)

Steady-state

Steady-state

"̇ = − %& ", ( + * " − "+,-.
% /0/" ", ( + 1

Denominator = direct effect + radiation damping

= 2%
3 + 4

267

The two effects are comparable if

3 ≈ 2 2%4 67



Formulation: two spring-blocks system

• System of equations of motion:
!" = $%" − '"" (" − ()*+, − '"- (- − ()*+,
!- = $%- − '-- (- − ()*+, − '-" (" − ()*+,

elastic coupling between blocks
• Define . = (%", 1", %-, 1-)
• The rest is the same …



Formulation: continuum fault

• Boundary element method: fault discretized by a grid of N 
rectangular cells 

• System of N equations of motion: 
!" = −%&" − ∑( )"( *( − *+,-.

elastic coupling (all to all)
• )"( is the stress on cell i due to a unit slip on cell j
• The matrix ) is computed analytically (Okada’s formulas)
• The rest is the same
• The matrix multiplication )* dominates the computational cost
• Speed-up of )* computation by FFT in regular grids, by H-matrix 

in non-regular grids



Resolution length

Smallest length of the problem: minimum slip 
localization length and the size of the process zone 
at the rupture tip. 
For the ageing law:

!" = $%&/()

To guarantee good numerical resolution the cell size 
Δ+ must be much smaller than !"Distance along fault

Rubin and Ampuero (2005)

Log(V)

!"



Resolution length

Smallest length of the problem: minimum slip 
localization length and the size of the process zone 
at the rupture tip. 
For the ageing law:

!" = $%&/()

To guarantee good numerical resolution the cell size 
Δ+ must be much smaller than !"

Distance along fault
Rubin and Ampuero (2005)

∼ !"∼ !"



Resolution length

Smallest length of the problem: minimum slip 
localization length and the size of the process zone 
at the rupture tip. 
For the ageing law:

!" = $%&/()

To guarantee good numerical resolution the cell size 
Δ+ must be much smaller than !"

Distance from the rupture tip 
normalized by !"

Rubin and Ampuero (2005)

∼ !"
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Process zone in rate-and-state friction

From lecture 3: process zone size 

Λ" ≈ 2%&'/ )* − ), -

Rate-and-state behaves as slip-weakening near 
the rupture front, with equivalent properties:

.' = 0 ln 3/3∗ ≈ 20 0

)* − ), ≈ 67 ln 3/3∗

&' ≈
1
2 670 ln

3
3∗

-

à Process zone size:

Λ" ≈
%0
67 = 09

Rubin and Ampuero (2005)

Larger 
velocity jump

Slip / L



Slip law: "̇ = −%"/' log %"/'

+, ≈ '

Λ/ ≈ '0/ log 1
1∗

It shrinks à more challenging to resolve

Ageing law: "̇ = 1 − %"/'

+, = ' ln %/%∗

Λ/ ≈
5'
67 = '0

Slip / L Slip / L

Two flavors of rate-and-state friction



Two flavors of rate-and-state friction

Ageing and slip laws predict radically different nucleation processes



Other important lengths

!" = $%
&'( ) =

&
&'( !& (Rice, 1993, also called ℎ∗)

!, = -! &
&'( .) =

&
&'(

/
!& (Rubin and Ampuero, 2005)

Do not confuse process zone with the other characteristic sizes, they are larger!

Log(V)

Distance along fault Distance along fault

Log(V)



An isolated brittle asperity (v-weakening) within a creeping fault (v-strengthening).
Constant slip velocity Vbackground imposed far from the asperity.

Position along-strike

Time 
normalized by
Dc/ Vbackground

Log(V/ Vbackground )

Example: brittle asperity isolated in a creeping fault zone



Example: brittle asperity isolated in a creeping fault zone

Asperity size

seismic

slow slip

aseismic

Maximum 
slip velocity



Migrating swarms: asperity interactions 
mediated by creep transients

The asperity 
breaks

It triggers a 
migrating 
aseismic
transient

Influence radius



Migrating swarms: 
asperity interactions 
mediated by creep transients

Quasi-dynamic 3D simulations with 
K. Ariyoshi (JAMSTEC)

Cascading failure of a population of 
brittle asperities

à Tremor swarm



Slow slip and tremor migration patterns

7 km/day

Non-volcanic tremor migration 
patterns in Cascadia, USA

Tremor migrates slowly along 
strike (         ~10 km/day) tracking 
the front of the slow slip event

Episodic tremor swarms 
propagate backwards, faster 
(       ~ 100 km/day)

Houston et al (2010)

Days



Simulations of slow slip and tremor

QDYN model of slow slip and tremor

Luo and Ampuero

Rapidal Tremor Reversals 
observed in Cascadia

Houston et al (2010)

≈8 km/day Model


