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DE SITTER HOLOGRAPHY?

By now we have a fairly good understanding of  
AdS holography: defined by a dual CFT. 

What about de Sitter? 

“dS/CFT”: a non-unitary CFT dual  
                  to an inflating patch. 

!ℐ+

But basic observables of dS are transition amplitudes 
between infinite past and future (“metaobservables”). 
Is there a dual “CFT” which computes them?
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DE SITTER HOLOGRAPHY?

ℐ+

ℐ−

= ⟨g+ |𝒰 |g−⟩ = ∫ [dξ+][dξ−]e−SCFT[ξ+,ξ−]
?

There are nonzero correlations between  
!  and !  without local interactions 
which couple the boundaries.
ℐ+ ℐ−

Immediate problem: 
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But basic observables of dS are transition amplitudes 
between infinite past and future (“metaobservables”). 
Is there a dual “CFT” which computes them?



JACKIW-TEITELBOIM GRAVITY

Enter “JT” gravity, a toy model for 2d quantum gravity.

SJT = − S0 χ −
1

16πG ∫ d2x g φ (R +
2
L2 )

AdS version: [KJ] [Maldacena, Stanford, Yang] [Engelsöy, Mertens, Verlinde]

Usual Euler term 
familiar from worldsheet 

string theory.

“Dilaton”

No bulk dof; however there is a 
boundary reparameterization mode. 
Loops can sometimes be summed to 
all orders in G. [Stanford, Witten]
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JACKIW-TEITELBOIM GRAVITY

SJT = S0 χ +
1

16πG ∫ d2x −g φ (R −
2
L2 )

There is also a version with positive cosmological constant. 

“Nearly dS2” solutions: 

Gives us a theoretical laboratory to study dS quantum gravity. 

ds2 = − dt2 + cosh2 ( t
L ) dx2

φ = sinh t
ℓ
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GOAL: QUANTUM COSMOLOGY DONE RIGHT
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NO-BOUNDARY WAVEFUNCTION

Consider the “disk” partition function:

?

ℐ+

Boundary conditions:

Smoothly caps off in the past 
Near !  we have a cutoff slice !,ℐ+ ε

dS2 ≈ dx2

ε2 , x ∼ x + β ,

φ ≈ 1
Jε ,

ZHH ≈ ⟨β |𝒰 |∅⟩
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NO-BOUNDARY WAVEFUNCTION

Consider the “disk” partition function: ZHH ≈ ⟨β |𝒰 |∅⟩
ℐ+

Classical solution is complex:

ds2 = − dt2 + cosh2 t dθ2 ,
φ = 2π

βJ sinh t ,

τ ∈ [0,π/2] :
ds2 = dτ2 + cos2 τ dθ2 ,
φ = − 2πi

βJ sin τ ,

t ≥ 0 :
t = 0
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NO-BOUNDARY WAVEFUNCTION

Consider the “disk” partition function: ZHH ≈ ⟨β |𝒰 |∅⟩
ℐ+

t

−
iπ
2

t = 0

!t = − iτ

ds2 = − dt2 + cosh2 t dθ2 ,
φ = 2π

βJ sinh t ,
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Classical solution is complex:



NO-BOUNDARY WAVEFUNCTION

Consider the “disk” partition function: ZHH ≈ ⟨β |𝒰 |∅⟩
ℐ+

t = 0

SJT = S0 χ+
1

16πG ∫ d2x −g φ (R − 2)

+
1

8πG ∫ dθ h φ(K − 1)
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NO-BOUNDARY WAVEFUNCTION

Consider the “disk” partition function: ZHH ≈ ⟨β |𝒰 |∅⟩
ℐ+

t = 0

SJT = S0 χ+
1

16πG ∫ d2x −g φ (R − 2)

+
1

8πG ∫ dθ h φ(K − 1)−iS0
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NO-BOUNDARY WAVEFUNCTION

Consider the “disk” partition function: ZHH ≈ ⟨β |𝒰 |∅⟩
ℐ+

t = 0

SJT = − iS0+
1

16πG ∫ d2x −g φ (R − 2)

+
1

8πG ∫ dθ h φ(K − 1)
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NO-BOUNDARY WAVEFUNCTION

Consider the “disk” partition function: ZHH ≈ ⟨β |𝒰 |∅⟩
ℐ+

t = 0

SJT = − iS0+
1

16πG ∫ d2x −g φ (R − 2)

+
1

8πG ∫ dθ h φ(K − 1)

!0
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NO-BOUNDARY WAVEFUNCTION

Consider the “disk” partition function: ZHH ≈ ⟨β |𝒰 |∅⟩
ℐ+

t = 0

SJT = − iS0 +
1

8πG ∫ dθ h φ(K − 1)
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NO-BOUNDARY WAVEFUNCTION

Consider the “disk” partition function: ZHH ≈ ⟨β |𝒰 |∅⟩
ℐ+

t = 0

SJT = − iS0 +
1

8πG ∫ dθ h φ(K − 1)

gives Schwarzian action
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NO-BOUNDARY WAVEFUNCTION

Consider the “disk” partition function: ZHH ≈ ⟨β |𝒰 |∅⟩
ℐ+

t = 0

ZHH = eS0 ∫ [Df ] eiS[ f ]

S[ f ] =
1

4GβJ ∫
2π

0
dθ ({f(θ), θ} +

1
2

f′�(θ)2)
{f (θ), θ} =

f′�′�′�(θ)
f′�(θ)

−
3
2 ( f′�′�(θ)

f′�(θ) )
2

tan ( f
2 ) ∼

a tan ( f
2 ) + b

c tan ( f
2 ) + d

, ad − bc = 1

f(θ + 2π) = f(θ) + 2π

n.b.
⇒ f ∈ Diff(𝕊1)/PSL(2; ℝ)

= Schwarzian derivative
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NO-BOUNDARY WAVEFUNCTION

Consider the “disk” partition function: ZHH ≈ ⟨β |𝒰 |∅⟩
ℐ+

t = 0

ZHH = eS0 ∫ [Df ] eiS[ f ]

=
1

2π(−2iβJ)3/2
eS0+ πi

4GβJ

exact to all orders in G!

Not clear how to normalize !  or ! , 
but we do see relative suppression to nucleate  
at large !, i.e. large universes.

|β⟩ |∅⟩

β
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NO-BOUNDARY WAVEFUNCTION

Consider the “disk” partition function: ZHH ≈ ⟨β |𝒰 |∅⟩
ℐ+

t = 0

ZHH =
1

2π(−2iβJ)3/2
eS0+ πi

4GβJ

= Zdisc(−iβJ)

continuation of Euclidean AdS2 result!
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NO-BOUNDARY WAVEFUNCTION

Consider the “disk” partition function: ZHH ≈ ⟨β |𝒰 |∅⟩
ℐ+

Classical solution is complex:

t

−
iπ
2

t = 0

!t = − iτ

t = ρ −
iπ
2

ds2 = − dt2 + cosh2 t dθ2 ,
φ = 2π

βJ sinh t ,
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NO-BOUNDARY WAVEFUNCTION

Consider the “disk” partition function: ZHH ≈ ⟨β |𝒰 |∅⟩
ℐ+

Classical solution is complex:

t

−
iπ
2

t = 0

!t = − iτ

t = ρ −
iπ
2

ds2 = − (dρ2 + sinh2 ρ dθ2) ,

φ = − 2πi
βJ cosh ρ ,
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NO-BOUNDARY WAVEFUNCTION

Consider the “disk” partition function: ZHH ≈ ⟨β |𝒰 |∅⟩
ℐ+

Hyperbolic disc in (-,-) signature.

Continuation from dS to EAdS 
[Maldacena, ’10]
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ds2 = − (dρ2 + sinh2 ρ dθ2) ,

φ = − 2πi
βJ cosh ρ ,



NO-BOUNDARY WAVEFUNCTION

Consider the “disk” partition function: ZHH ≈ ⟨β |𝒰 |∅⟩
ℐ+

ZHH = ∫
∞

0
dE ρ(E)eiβE ∼ tr(eiβH)

ρ(E) =
eS0 G
2π3/2J

sinh ( πE
GJ )
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GLOBAL NEARLY DS2

ℐ+

ℐ−

Classical solutions (for ! ):β+ = β− = ββ+

β−

ds2 = − dt2 + α2 cosh2 t dΨ2 ,

φ =
2πα
βJ

sinh t

Ψ = θ + γΘ(t)

2πα

Zglobal ≈ ⟨β+ |𝒰 |β−⟩Now the annulus partition function:
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GLOBAL NEARLY DS2

ℐ+

ℐ−

β+

β−

2πα

Zglobal ≈ ⟨β+ |𝒰 |β−⟩Now the annulus partition function:

Zglobal = − ∫
α

0

dα α
2G ∫

2π

0
dγ∫ [Df+][Df−]eiS[ f+, f−]

S[ f+, f−] =
1

4Gβ+J ∫
2π

0
dθ ({f+(θ), θ} +

α2

2
f′�+(θ)2) − ( + → − )

Zglobal = − 2π∫
∞

0

dα α
2G

ZT(β+J, α)Z*T (β−J, α)

ZT(βJ, α) =
1

2π(−2iβJ)1/2
e

πiα2
4GβJ
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GLOBAL NEARLY DS2

ℐ+

ℐ−

β+

β−

2πα

Zglobal ≈ ⟨β+ |𝒰 |β−⟩Now the annulus partition function:

Zglobal = − ∫
α

0

dα α
2G ∫

2π

0
dγ∫ [Df+][Df−]eiS[ f+, f−]

=
i

2π

β+β−

β+ − β−

Again exact to all orders in G.

Can interpret as propagator for the universe.
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GLOBAL NEARLY DS2

ℐ+

ℐ−

β+

β−

2πα

Zglobal ≈ ⟨β+ |𝒰 |β−⟩Now the annulus partition function:

Zglobal =
i

2π

β+β−

β+ − β−

= Z0,2(β1J → − iβ+J, β2J → iβ−J)

Continuation of annulus Z of EAdS2 
[Saad, Shenker, Stanford]
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GLOBAL NEARLY DS2

ds2 = − dt2 + α2 cosh2 t dθ2

t

−
iπ
2

t = ρ −
iπ
2

ds2 = − (dρ2 + α2 sinh2 ρ dθ2)
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TOPOLOGICAL GAUGE THEORY

Another way of thinking about it: 
    JT gravity in dS is equivalent to a !  !  theory. 
    So is JT in Euclidean AdS!

PSL(2; ℝ) BF

For the annulus partition function of !  one integrates over 
Wilson loops around the circle.

BF

Integral over !  = integral over elliptic monodromies of ! .α PSL(2; ℝ)
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HIGHER TOPOLOGIES

This viewpoint is ideally situated to tackle more complicated 
topologies, and so the genus expansion of JT dS gravity.

There are no non-singular Lorentzian R=2 geometries beyond  
the annulus. However we can define the gravity on more  
complicated topologies by integrating over smooth, flat gauge 
configurations. After some work (assuming a conjecture [Do ’11] ), 
the genus expansion coefficients are the continuation from those 
recently obtained for Euclidean AdS.
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MATRIX INTEGRAL INTERPRETATION

Let us return to the question of de Sitter holography. 

What dual structure can compute the various amplitudes? 

[Saad, Shenker, Stanford] recently showed that the genus expansion 
of EAdS JT gravity coincides with the genus expansion of an 
appropriate double scaled one Hermitian-matrix integral 

(whose leading density of states coincides with that of the 
Schwarzian theory).

ZMM = ∫ dH exp (−Ltr(V(H)))
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MATRIX INTEGRAL INTERPRETATION

Our result implies that the genus 
expansion of JT dS gravity is  
encoded in the same ensemble.

An example of the dictionary:

β+
1 β+

2

β−

⟨tr (eiβ+
1 H) tr (eiβ+

2 H) tr (e−iβ−H)⟩
conn,MM,g

=
⋮ g
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BECAUSE THERE ARE RESURGICISTS HERE

The genus expansion is asymptotic, breaking down when

g = βJG ∼ exp ( 2S0

3 ) .

The non-perturbative completion is non-unique. 

A basic example of a non-perturbative effect is that the exact 
density of states is non-perturbatively small below the cut.
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UNITARITY?

Is time evolution in this toy model unitary? [Cotler, KJ, unpublished]
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UNITARITY?

Naively no:

The dominant process  
is the creation/annihilation of  
baby universes, e.g. 

ℐ+

ℐ−

β+

β−

(enhanced by !  relative to annulus)∼ e2S0
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Is time evolution in this toy model unitary? [Cotler, KJ, unpublished]



UNITARITY?

Then !  is completely 
uncorrelated between !  and ! .

⟨β1 |𝒰†𝒰 |β2⟩ ≈ ⟨β1 |𝒰† |∅⟩⟨∅ |𝒰 |β2⟩
β1 β2
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However:
Need to account for normalization of ! !  
Depends on ! .

|∅⟩
Zsphere ∼ e2S0

*I know of no principled reason to do this.

Zglobal =
i

2π

β+β−

β+ − β−

If we can discard ! *, then the “propagator” 
we found from annulus is consistent with  
approximate unitary evolution at large ! , with  

a measure on !  of the form !

|∅⟩

eS0

|β⟩
dβ
β

.



CONCLUSIONS

1. JT gravity as a toy model for quantum cosmology. 

2. Partition functions related by continuation from  
Euclidean AdS JT gravity.  

3. By virtue of [Saad, Shenker, Stanford], genus expansion of dS JT  
coincides with that of a double-scaled matrix integral.  

4. Approximate bulk unitarity..? [WIP]
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THANK YOU!
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