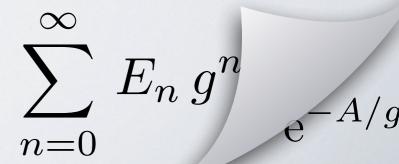
A RESURGENT TRANSSERIES FOR N=4 SUSY YANG-MILLS

Inês Aniceto

Non-Perturbative Methods in Quantum Field Theory ICTP Trieste, 4 September 2019



PERTURBATION THEORY

Perturbation theory, fundamental in computation of observables, often leads to divergent asymptotic expansions

Surprisingly, this asymptotic behaviour carries crucial information about exponentially small, non-perturbative (NP) phenomena governing the global analytic properties of physical observables

In this talk:

Study the late-time behaviour of the energy density of a strongly coupled plasma, with the goal of obtaining its global analytic properties

OUTLINE

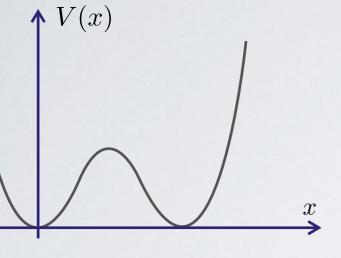
- I. Introduction to resurgent transseries
- 2. Late-time behaviour for strongly coupled plasma
 - Microscopic description and dual gravity solution
 - Asymptotic analysis and QNMs
- 3. Müller-Israel-Stuart hydrodynamics
 - The attractor solution from asymptotic late-times?
- 4. Future directions

INTRODUCTION TO RESURGENT TRANSSERIES

PERTURBATION THEORY IN QM

g very small

Perturbation
$$E_{g.s.}(g) \simeq \sum_{n=0}^{\infty} E_n g^n$$
 theory



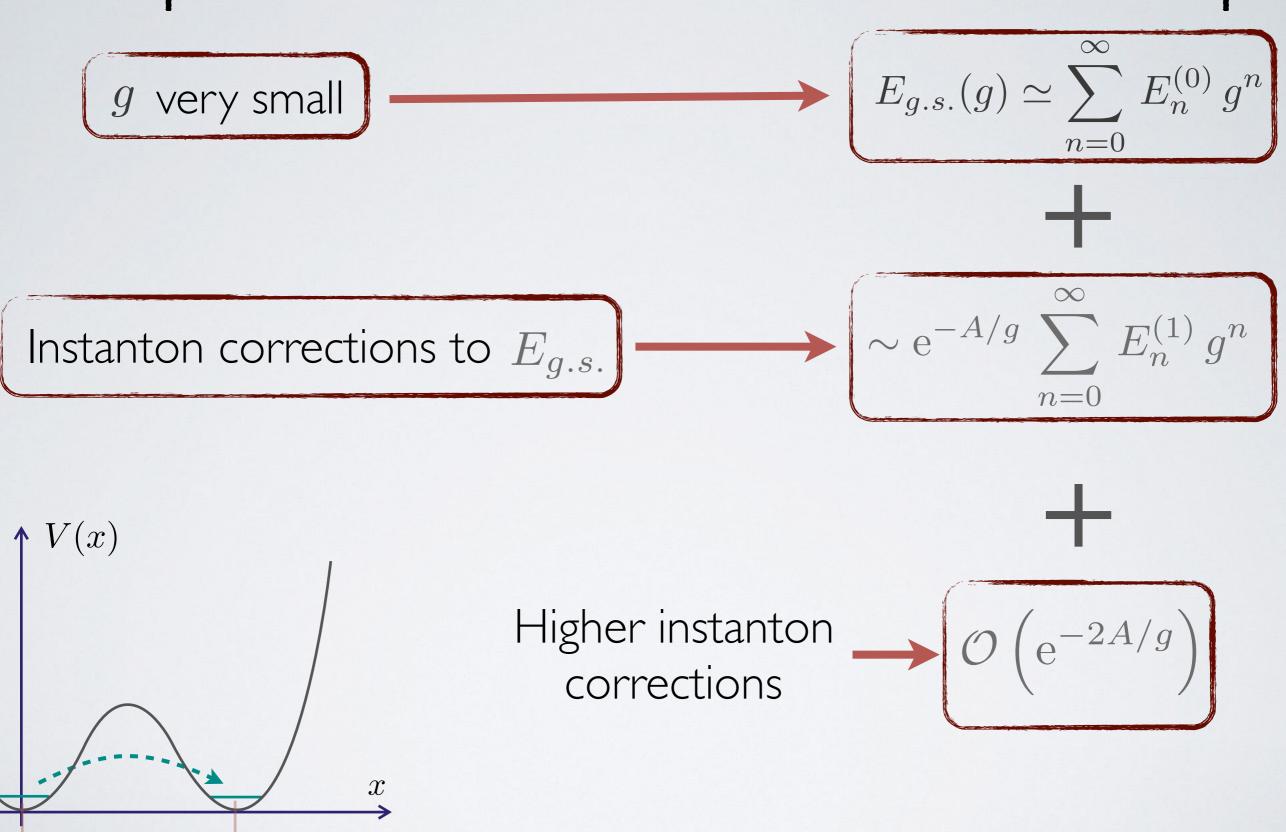
$$V(x) = \frac{1}{2}x^2 (1 - \sqrt{g}x)^2$$

ullet Series is asymptotic: For large enough n $E_n \sim n! A^{-n}$

Why asymptotic? Existence of instantons

Corrections to $E_{g.s.} \sim \mathrm{e}^{-A/g} \sum E_n^{(1)} g^n$ Suppressed!

BEYOND PERTURBATION THEORY



 x_1

TRANSSERIES SOLUTION

$$E_{g.s.}(g,\sigma) \simeq \sum_{k=0}^{\infty} \sigma^k e^{-kA/g} E^{(k)}(g)$$
 $E^{(k)}(g) \simeq \sum_{n=0}^{\infty} E_n^{(k)} g^n$

Formal expansion in transmonomials

- ullet the small parameter $\,g\,$
- non-perturbative term $e^{-A/g}$
- \bullet σ encodes boundary/initial conditions

k-instanton contribution, each is asymptotic $E_n^{(k)} \sim n! (kA)^{-n}$

 $E_{g.s.}(g,\sigma)$

requires all instantons to be well defined

RESURGENCE

$$E^{(k)} \sim \sum_{n=0}^{\infty} E_n^{(k)} g^n$$

Coefficients between different sectors are related through large-order relations

Look at perturbative coefficients for large enough \boldsymbol{n}

$$E_n^{(0)} \sim \frac{n!}{A^n} \left(E_1^{(1)} + \frac{A}{n-1} E_2^{(1)} + \cdots \right) + \frac{n!}{(2A)^n} \left(E_1^{(2)} + \frac{2A}{n-1} E_2^{(2)} + \cdots \right) + \cdots$$

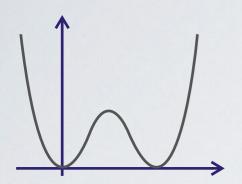
Same is true for all instanton coefficients

Using Resurgence

large order relations encode NP information in the perturbative series

BOREL TRANSFORMS

Determine NP phenomena from an asymptotic series



$$E_{g.s.}(g) \simeq \sum_{n=0}^{\infty} E_n^{(0)} g^n$$
 $E_n^{(0)} \sim \frac{n!}{A^n}$

for large enough $\,n\,$

Remove the factorial growth to get a convergent series: inverse Laplace transform

$$B_E(s) = \sum_{n=0}^{\infty} \frac{E_n^{(0)}}{n!} s^n$$

- Non-perturbative phenomena: singularities in Borel plane
- Singularities usually will be branch cuts
- Singular directions: Stokes lines

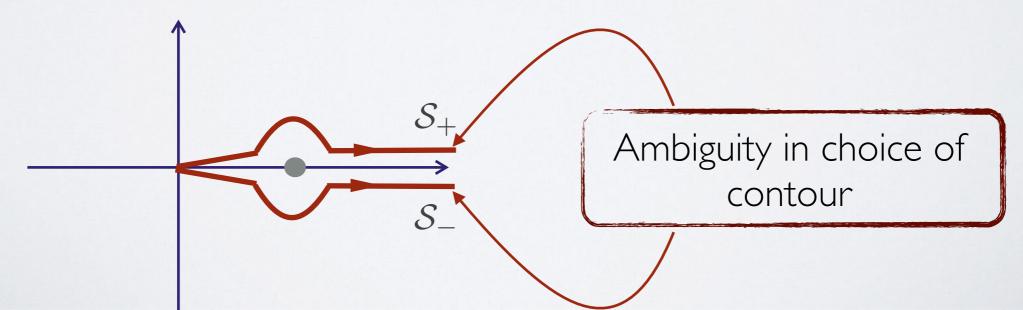
BORELRESUMMATION

How to associate a function to the original asymptotic series?

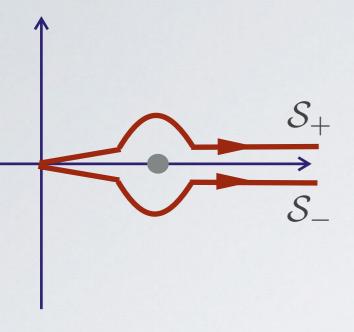
Via Borel resummation: Laplace transform

$$SE_{g.s.}(g) = \int_0^\infty ds B_E(s) e^{-s/g}$$

- Borel resummation straightforward in the directions without singularities
- Re-summation along Stokes directions: ambiguities



BORELRESUMMATION



Ambiguities in the transseries

- all sectors have ambiguities
- Use resurgence to fix σ s.t.

$$\left(\mathcal{S}_{+} - \mathcal{S}_{-}\right) E_{g.s.}(g, \sigma_0) = 0$$

[Delabaere'99][IA,Schiappa'I3]

$$S_{+}E_{g.s.}(g,\sigma) = S_{-}E_{g.s.}(g,\sigma + S)$$

Stokes constant (imaginary)

The full transseries is unambiguous, and we can construct an analytic solution in **any** direction

2.

LATE-TIME ASYMPTOTIC FOR STRONGLY COUPLED PLASMA IN $\mathcal{N}=4$ SYM

RELATIVISTIC HYDRODYNAMICS

It provides a reliable description of strongly coupled systems

- real life: strongly coupled quark-gluon plasma in particle accelerators;
- To determine the kinetic parameters of hydrodynamic equations (e.g. shear viscosity): study the associated microscopic theory

The associated microscopic theory can be a QFT, such as strongly coupled $\mathcal{N}=4$ Super Yang-Mills (SYM)

 $N o \infty$ gauge/gravity duality: determine hydrodynamic parameters, time dependent processes of the SYM plasma from dual geometry

STRONGLY COUPLED SYSTEMS

Kinematic regime: **expanding plasma** in the so-called central rapidity region, where one assumes **longitudinal boost invariance** (Bjorken flow)

[Bjorken '83]

In hydrodynamic theories the energy-momentum tensor is given by

Energy density $T^{\mu\nu} = \mathcal{E} u^{\mu}u^{\nu} + \mathcal{P}(\mathcal{E})(\eta^{\mu\nu} + u^{\mu}u^{\nu}) + \Pi^{\mu\nu}$ Shear stress tensor: theories given by: $\mathcal{P}(\mathcal{E}) = \mathcal{E}/3$ flow velocity

Symmetries: conformal invariance, transversely homogeneous, invariance under longitudinal Lorentz boosts

STRONGLY COUPLED SYSTEMS

Kinematic regime: **expanding plasma** in the so-called central rapidity region, where one assumes **longitudinal boost invariance** (Bjorken flow)

[Bjorken '83]

In hydrodynamic theories the energy-momentum tensor is given by

$$T^{\mu\nu} = \mathcal{E} u^{\mu}u^{\nu} + \mathcal{P}(\mathcal{E})(\eta^{\mu\nu} + u^{\mu}u^{\nu}) + \Pi^{\mu\nu}$$

Strongly coupled SYM boost invariant plasma: all physics encoded in $\mathcal{E}(\tau)$.

Obtaining this function is in general too difficult: perform a *large proper time expansion* $\tau \gg 1$.

LATE TIME BEHAVIOUR

Starting from highly non-equilibrium initial conditions, the microscopic theory will reveal the transition to hydrodynamic behaviour at late times

Conformal theories: late-time behaviour of energy density highly constrained

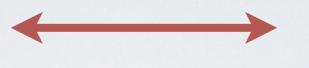
$$\mathcal{E}(\tau) = \frac{\Lambda}{(\Lambda \tau)^{1/3}} \left(1 + \sum_{k=1}^{+\infty} \frac{\epsilon_k}{(\Lambda \tau)^{2k/3}} \right), \ \tau \gg 1$$

- Λ is a dimensionful parameter encoding initial non-eq. conditions
- · Leading behaviour predicted by boost-invariant perfect fluid
- Subleading terms: dissipative hydrodynamic effects

Next: use dual geometry to analyse the expansion of boost invariant SYM plasma

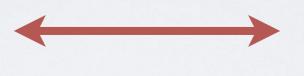
SYM PLASMA FROM ADS/CFT

Equilibrium states of the microscopic theory (CFT)



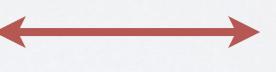
black hole solutions [Witten '98]

flat space at boundary: planar horizons



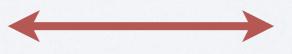
black branes

Perturbative non-equilibrium phenomena



linearised perturbations of black brane solution

Non-hydrodynamic d.o.f.



exp. decaying black branes' quasi-normal modes

[Janik, Peschanski '05][Janik '05]

SYM PLASMA FROM ADS/CFT

Dual geometry given by boost invariant 5D metric

$$ds^{2} = \frac{1}{z^{2}} \left(dz^{2} - e^{-A} d\tau^{2} + \tau^{2} e^{B} dy^{2} + e^{C} d\mathbf{x}_{\perp}^{2} \right) = \frac{1}{z^{2}} \left(G_{\mu\nu} dx^{\mu} dx^{\nu} + dz^{2} \right)$$

Solve Einstein equations with negative cosmological constant (asymptotic behaviour is AdS)

$$R_{\mu\nu} - \frac{1}{2}G_{\mu\nu}R - 6G_{\mu\nu} = 0$$

- metric components depend on z, au
- boundary condition at z = 0:

$$G_{\mu\nu} = \eta_{\mu\nu} + z^4 g_{\mu\nu}^{(4)} + \cdots$$

Energy density
$$\mathcal{E}\left(au
ight) = -\lim_{z o 0} rac{A\left(z, au
ight)}{z^4}$$

SYM PLASMA FROM ADS/CFT

Metric ansatz: multi-parameter transseries with exponential decaying sectors and perturbative expansions in proper time

The most general solution for the energy density of the SYM plasma is:

$$\mathcal{E}\left(u \equiv \tau^{2/3}, \boldsymbol{\sigma}\right) = \sum_{\boldsymbol{n} \in \mathbb{N}_0^{\infty}} \boldsymbol{\sigma}^{\boldsymbol{n}} e^{-\boldsymbol{n} \cdot \boldsymbol{A} \, u} \Phi_{\boldsymbol{n}}\left(u\right) , \quad \Phi_{\boldsymbol{n}}\left(u\right) = u^{-\beta_{\boldsymbol{n}}} \sum_{k=0}^{+\infty} \varepsilon_k^{(\boldsymbol{n})} \, u^{-k}$$

exponentially decaying coupled QNMs $\ \omega_k = -\frac{2\mathrm{i}}{3}A_k$

perturbative late-time expansions

- Infinite number of QNMs
- Parameters encoding non-hydro initial conditions

$$\boldsymbol{A} = (A_1, \bar{A}_1, A_2, \bar{A}_2, \cdots)$$

$$oldsymbol{\sigma} = \left(\sigma_{A_1}, \sigma_{ar{A}_1}, \sigma_{A_2}, \sigma_{ar{A}_2}, \cdots
ight)$$

All expansions in the energy density are asymptotic!

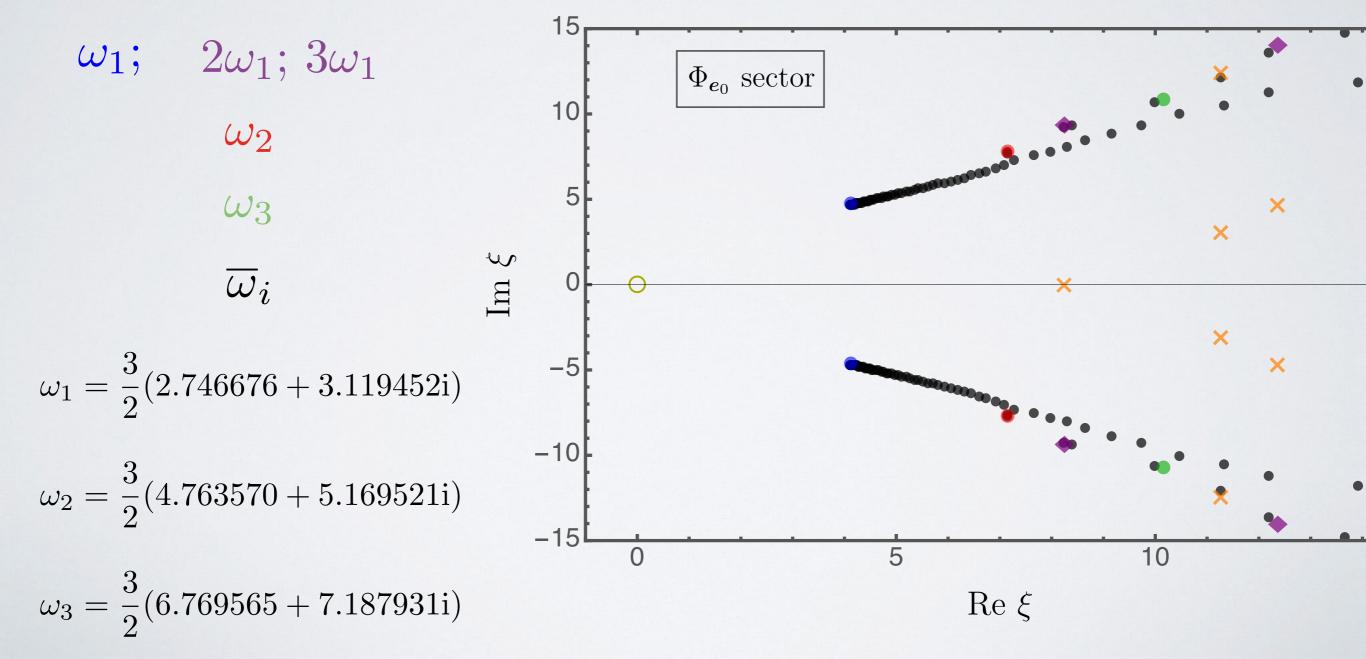
ASYMPTOTIC ENERGY DENSITY

Hydrodynamic expansion:

$$\Phi_0(u) = u^{-2} \sum_{k=0}^{+\infty} \varepsilon_k^{(0)} u^{-k}$$

$$\varepsilon_k^{(0)} \sim \frac{k!}{|A_1|}$$

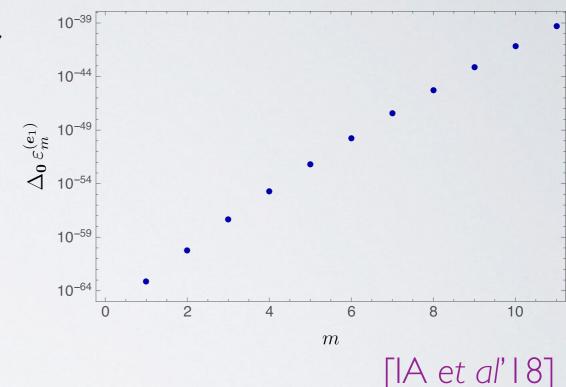
Singularities in Borel plane:



ASYMPTOTIC ENERGY DENSITY

$$\mathcal{E}\left(u \equiv \tau^{2/3}, \boldsymbol{\sigma}\right) = \sum_{\boldsymbol{n} \in \mathbb{N}_0^{\infty}} \boldsymbol{\sigma}^{\boldsymbol{n}} e^{-\boldsymbol{n} \cdot \boldsymbol{A} u} \Phi_{\boldsymbol{n}}\left(u\right) , \quad \Phi_{\boldsymbol{n}}\left(u\right) = u^{-\beta_{\boldsymbol{n}}} \sum_{k=0}^{+\infty} \varepsilon_k^{(\boldsymbol{n})} u^{-k}$$

- NP description of the late time behaviour of the SYM plasma
- Asymptotic analysis predicted coupled
 QMN solutions in gravity
- Agreement between gravity calculations and resurgence large-order predictions



- Can we recover the non-equilibrium behaviour of early times?
- Dependence of the transseries parameters on initial conditions?

Study a simpler relativistic hydrodynamic system

3.

MÜLLER-ISRAEL-STUART HYDRODYNAMICS

MIS CAUSAL HYDRODYNAMICS

Solve evolution equations of the Energy momentum tensor

$$\nabla_{\mu}T^{\mu\nu} = 0$$

- Assume boost invariant flow, conformal invariance
- Hydrodynamic gradient expansion: approximate shear stress tensor by corrections to ideal fluid

Müller-Israel-Stuart (MIS) equations

$$z C_{\tau \Pi} f f' + 4C_{\tau \Pi} f^2 + \left(z - \frac{16C_{\tau \Pi}}{3}\right) f - \frac{4C_{\eta}}{9} + \frac{16C_{\tau \Pi}}{9} - \frac{2z}{3} = 0$$

- Non-linear ODE describing the energy density
- $C_{\tau\Pi}$, C_{η} are phenomenological parameters

MIS CAUSAL HYDRODYNAMICS

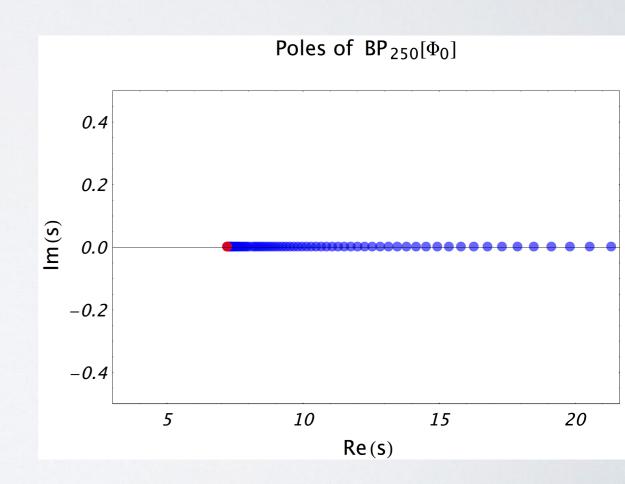
- We are interested in the late time regime $z\gg 1$
- It has a single, purely decaying non-hydrodynamic mode

Write the general solution as a transseries, sectors asymptotic. Study resurgent properties

$$\mathcal{F}(z,\sigma) = \sum_{n=0}^{+\infty} \sigma^n e^{-nAz} \Phi_n(z)$$

$$\Phi_n(z) = z^{-n\beta} \sum_{k=0}^{+\infty} a_k^{(n)} z^{-k}$$

$$A = \frac{3}{2C_{\tau\Pi}} \qquad \beta = -\frac{C_{\eta}}{C_{\tau\Pi}}$$



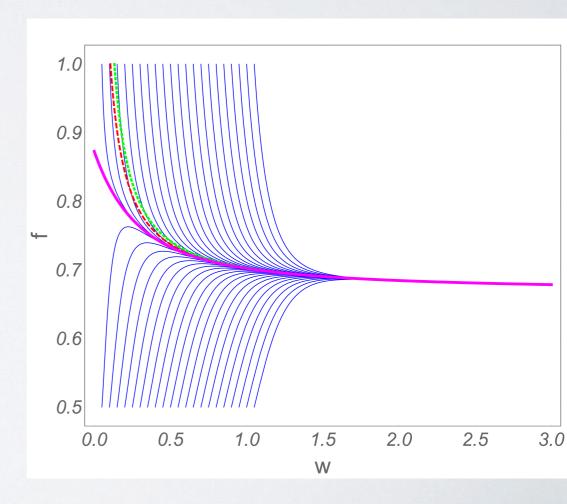
SOLUTION AT EARLY TIMES

Attractor solution: Stable solution, converging to a finite value at early times

Generic solution: divergent at early times, but will decay rapidly towards the attractor solution

$$\mathcal{F}_{\mathrm{Att}}(z) = \frac{2}{3} + \frac{1}{3} \sqrt{\frac{C_{\eta}}{C_{\tau\Pi}}} + \mathcal{O}(z)$$

Calculate attractor solution: Taylor expansion



[Heller,Spalinski '15]

SOLUTION AT EARLY TIMES

$$\mathcal{F}(z,\sigma) = \sum_{n=0}^{+\infty} \sigma^n e^{-nAz} \Phi_n(z) \qquad \qquad \Phi_n(z) = z^{-n\beta} \sum_{k=0}^{+\infty} a_k^{(n)} z^{-k}$$

Can we recover the attractor solution from the transseries expansion?

Need to fix the value of $\sigma = \sigma_R + i\sigma_I$

- Ambiguity cancelation fixes its imaginary part
- Comparison with attractor fixes its real part

ANALYTIC TRANSSERIES SUM

The order of transmonomials in the transseries can be rearranged:

$$\mathcal{F}(z,\sigma) = \sum_{k=0}^{+\infty} z^{-k} \sum_{n=0}^{+\infty} \left(\sigma z^{-\beta} e^{-Az}\right)^n a_k^n$$

Define a new variable: $\tau = \sigma z^{-\beta} e^{-Az}$

We want to sum the transseries in a new regime: $z^{-1} \ll \tau \ll 1$

The sum over powers of τ can be done exactly!

$$\mathcal{F}(z,\tau) = \sum_{k=0}^{+\infty} z^{-k} F_k(\tau) \qquad F_k(\tau) = \sum_{n=0}^{+\infty} \tau^n a_k^n$$

ANALYTIC TRANSSERIES SUM

$$\mathcal{F}(z,\tau) = \sum_{k=0}^{+\infty} z^{-k} F_k(\tau) \qquad F_k(\tau) = \sum_{n=0}^{+\infty} \tau^n a_k^n$$

Recursive calculation:

$$F_0(\tau) = \frac{2}{3} \left(1 + W \left(\frac{3}{2} \tau \right) \right)$$
 Lambert-W function
$$F_1(\tau) = \frac{1}{F_0(\tau)} \sum_{r=0}^3 f_1^{(r)} (C_\eta, C_{\tau\Pi}) F_0(\tau)^r$$

$$\vdots$$

$$F_k(\tau) = \frac{P_k \left(F_0(\tau) \right)}{Q_k \left(F_0(\tau) \right)}$$
 Polynomials

CONNECTION TO ATTRACTOR

$$\mathcal{F}(z,\tau) = \sum_{k=0}^{+\infty} z^{-k} F_k(\tau) \qquad z^{-1} \ll \tau \ll 1$$

Choose z large enough to be in above regime, but small enough to compare to attractor solution $\mathcal{F}_{\mathrm{Att}}(z)$ at early times

- Choose z off the real axis $z = z_R + \mathrm{i} z_I$
- Analytically continue attractor solution to complex plane

Solve
$$\mathcal{F}(z,\tau) = \mathcal{F}_{\mathrm{Att}}(z)$$
 to obtain $\tau(z) = \sum_{r \geq 0} \tau_r \, z^{-r}$

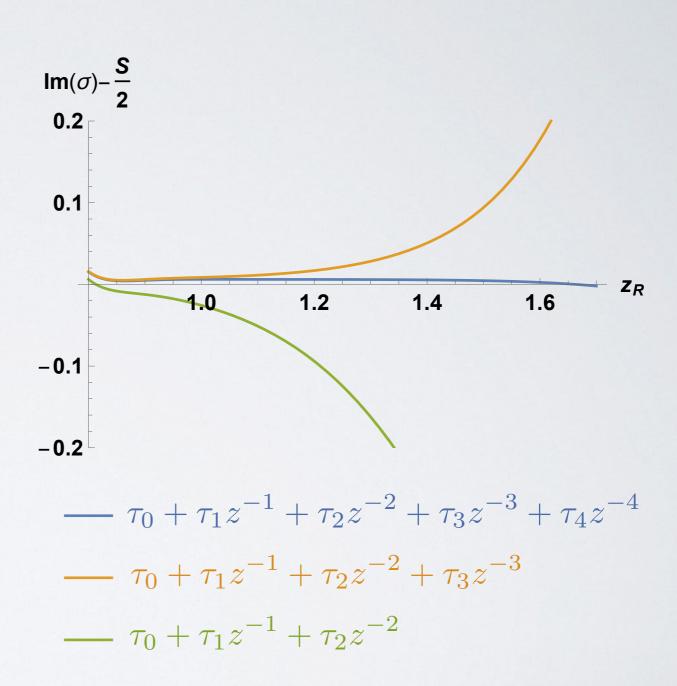
Transseries parameter: $\sigma = z^{\beta} e^{Az} \sum \tau_r z^{-r}$

CONNECTION TO ATTRACTOR

We obtain:

$$\sigma \sim -0.245 - 0.0128i$$

Imaginary part approximates the value from ambiguity cancelation



4. FUTURE DIRECTIONS

OPEN QUESTIONS

Transseries in gauge theories

- asymptotics with multi-parameters
- interpretation of non-perturbative contributions

Transseries summation and multiple scales

- different summations give rise to fast and slow scales
- boundary layers, initial value problems

Analytic properties of asymptotic observables

- phase transitions
- role of initial conditions
- probe of dualities

THANK YOU!

$$\sum_{n=0}^{\infty} E_n g^n$$

$$e^{-A/g}$$