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PERTURBATION THEORY
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Perturbation theory, fundamental in computation of observabl
often leads to divergent asymptotic expansions
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Surprisingly, this asymptotic behaviour carries crucial information
about exponentially small, non-perturbative (NP) phenomena
governing the global analytic properties of physical observables

In this talk:

Study the late-time behaviour of the
energy density of a strongly coupled
plasma, with the goal of obtaining Its

olobal analytic properties
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1.
INTRODUCTION TO RESURGENT
TRANSSERIES

[IA,Basar,Schiappa’ | 8]



PERTURBATION THEORY IN &M

\ y * Series is asymptotic: For large enough n
I : B, ~ i

s = s = — S - L = -

| Why asymptotic! Existence of instantons

Corrections CORE W il Z E™ g™ Suppressed!
- i n=0




BEYO ND PERTURBATION THEORY

Higher instanton
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corrections |

[Vanstein'64;Bender,Wu'/ 3;Bogomolny,Zinn-justin'80]
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. Formal expansion In transmonomials

o

e the small parameter @

* non-perturbative term e~ A/9 ,
» 0 encodes boundary/initial condrtions |

N e G ST Caa I e
L e (g.0) requires all instantons to be well defined




RESURGENCE

Coefficients between different sectors
are related through large-order relations

~

Using Resurgence

e —— = o =

- Look at perturbative coefficients for
| large enough N

| | large order relations
| encode NP

| information in the

perturbative series




BOREL TRANSFORMS

| " Remove the factomal grovvth to |
oet a convergent series: Inverse (
Epleectiansionm ™

0O E7(10)
BE(S> — Z i

n!
n=0

* Non-perturbative phenomena: singularities in Borel plane

*Singularities usually will be branch cuts

*Singular directions: Stokes lines



BOREL RESUMMATION
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o

kHovv to associate a function to the original asymptotic series?

Via Borel resummation: Laplace transtorm

R / dsBp(s)e="/9
0

» Borel resummation straightforward in the directions wrthout singularities

* Re-summation along Stokes directions: ambigurties

< | Ambiguity in choice of |
S E@RteHs J




BOREL RESUMMATION

e — S =

- Ambigurties In the transseries

S_|_ i
< — e all sectors have ambiguities
S

=  Use resurgence to fix o st

(54 — 8_) Ey.s.(g,00) = 0
\_ = Sttt b R

S—|-Eg.s.(ga U) V3§ S—Eg.s.(97 o @

Stokes constant (imaginary)
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l/ The full transseries 1s unambiguous, and we can
‘ construct an analytic solution In any direction
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3.
LATE-TIME ASYMPTOTIC FOR
STRONGLY COUPLEDP PLASMA
IN N =4 sSYM



RELATIVISTIC HYDRODYNAMICS

't provides a reliable description of strongly coupled systems

* real life: strongly coupled quark-gluon plasma in particle accelerators;

* Jo determine the kinetic parameters of hydrodynamic equations (e.g.
shear viscoslity): study the associated microscopic theory

The associated microscopic theory can be a QFT, such as strongly coupled
N = 4 SuperYang-Mills (SYM)

- — — i ———-—————————— e ———

N — oo gaugelgravity duality: determine hydrodynamic |
| parameters, time dependent processes of the SYM plasma |
from dual geometry

[Policastro et al '01-'04; Nastase ‘03]



STRONGLY COUPLED SYSTEMS

Kinematic regime: expanding plasma in the so-called central rapidity
region, where one assumes longitudinal boost invariance (Bjorken flow)

[Bjorken '83]

In hydrodynamic theories the energy-momentum tensor Is given by

Tl :@u“u” + P(é)(n“” +(u %) +@

Energy density
Pressure, in 4d conformal Shear stress tensor:
theories given by: dissipative effects
2l =23 flow velocity

Symmetries: conformal invariance, transversely homogeneous,
invariance under longitudinal L orentz boosts




STRONGLY COUPLED SYSTEMS

Kinematic regime: expanding plasma in the so-called central rapidity
region, where one assumes longitudinal boost invariance (Bjorken flow)
[Bjorken '83]

In hydrodynamic theories the energy-momentum tensor Is given by

T = Eulu” + P(E) (" + uHu”) + TIHY

— T e — — L = S —

/ Strongly coupled SYM boost invariant plasma:
all physics encoded in £(7).

Obtaining this function is in general too difficult:
\\ perform a large proper time expansion 7> 1.
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LATE TIME BEHAVIOUR

Starting from highly non-equilibrium initial conditions, the microscopic
theory will reveal the transition to hydrodynamic behaviour at late times

Conformal theories: late-time behaviour of energy density highly constrained

A i €L
Sl = 1+ E el
e ( - <A¢>2k/3>

» A is a dimensionful parameter encoding initial non-eq. conditions
* Leading behaviour predicted by boost-invariant perfect fluid

* Subleading terms: dissipative hydrodynamic effects
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. use dual geometry to analyse the
~ expansion of boost invariant SYM plasma |
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SYM PLASMA FROM ADS/CFT

Equilibrium states of the

microscopic theory (CFT) PRI SOlLEJ\[/l\(/DiESen 98]
flat space at boundary: .ty Lk b

planar horizons

Perturbative non-equilibrium E s inearised perturbations of
phenomena black brane solution

exp. decaying black branes’
quasi-normal modes

NSRS Gliee amicdof s =

[Janik, Peschanski "O5][Janik '05]



SYM PLASMA FROM ADS/CFT

Dual geometry given by boost invariant 5D metric

1 1
ds® = — (dz” — e~ dr? + T2 dy? +e%dzl) = = (Guvdatda” + dz°)

Solve Einstein equations with negative cosmological constant
(asymptotic behaviour is AdS)

| ° metric components depend on z, T
Ryy — 5Gu B — 66y =0 - boundary condition at z = 0:
G,LLV = 77“” -+ 249,525) -+ .-

/» ey =
/

|
t Energy density 2

[Hare et al '00][Skenderis '02][Fefferman,Graham '85]



SYM PLASMA FROM ADS/CFT

Metric ansatz: multi-parameter transseries with exponential decaying sectors
and perturbative expansions in proper time

The most general solution for the energy density of the SYM plasma is:

E (u =T
exponentially decaying perturbative late-time
geliplcctONIMs " wy = —glAk expansions

* Infinite number of QNMs A= (A1, A1, Az, Ay, o)

» Parameters encoding non-hydro Initial conditions 0 = (04, 04,045,000 L el

All expansions in the energy density are asymptotic!

[HellerJanik, Witaszcyk' | 5; |A et al’ | 8]



ASYMPTOTIC ENERGY PENSITY

Hydrodynamic expansion: —225“)) =l e i

Singularities in Borel plane:
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ASYMPTOTIC ENERGY PENSITY

+0o0
& (u =, 0') — Z c”e "B, (u), P,w =u " Z 5,(?) T
k=0

neNg°®

10—39 L

» NP description of the late time behaviour
of the SYM plasma

10—44 [

10—49 B

» Asymptotic analysis predicted coupled i

. ; - (o

QMN solutions In gravity

» Agreement between gravity calculations
and resurgence large-order predictions R R

[IA et al 18]

» (Can we recover the non-equilibrium behaviour of early times?

» Dependence of the transseries parameters on inrtial condrtions?

= = S — — - e ——
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- Study a simpler relativistic hydrodynamic system
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MULLER-ISRAEL-STUART
HYDPRODYNAMICS



MIS CAUSAL HYDRODYNAMICS

Solve evolution equations of the Energy momentum tensor
Vi =10

- Assume boost invariant flow, conformal invariance

* Hydrodynamic gradient expansion: approximate shear stress tensor
by corrections to ideal fluid

[

| Muller-lsrael-Stuart (MIS) equations
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o 60 2
9 9 3
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* Non-linear ODE describing the energy density
- Crm, O are phenomenological parameters



MIS CAUSAL HYDRODYNAMICS

* We are interested In the late time regime z > 1
* [t has a single, purely decaying non-hydrodynamic mode

Write the general solution as a transseries, sectors asymptotic.
Study resurgent properties

Poles of BP,5¢[®p]

+00
BCa— ) o D, (2)
n=0

0.4
+ o0 0.2
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A == 3 5 =1 — C')? -0.4
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Re(s)

[Heller,Spalinski’| 5; Basar,Dunne'l 5; |A,Spalinski’ | 5]



SOLUTION AT EARLY TIMES

Attractor solution: Stable solution, converging to a finite

value at early times

Generic solution: divergent at early times, but will decay rapidly

towards the attractor solution

Pl
Faw(z) = 5+ .

+ O(z2)

g Uaiilge 0o |1

0.8

Calculate attractor solution: -
Taylor expansion

0.7
0.6

0.5

1.0

0.0

0.5

1.0

1.5 2.0 2.5 3.0
\W

[Heller,Spalinski * | 5]



SOLUTION AT EARLY TIMES

—+ o0 —+ o0
o) = Z e Al ) O Z a,gn)z_k
n=0 k=0

Can we recover the attractor solution
from the transseries expansion?

Need to fix the value of o =0 +io;

* Ambigurty cancelation fixes its imaginary part

- Comparison with attractor fixes its real part

[Heller,Spalinski * | 5]



ANALYTIC TRANSSERIES SUM

The order of transmonomials in the transseries can be rearranged:
=EY S O®
n
o — Z S Z (o730 ew itun
k=0 n=0
—Be—Az

B nEY e me v/ variable: 7 =0z

We want to sum the transseries in a new regime: 2z ' <7 < 1

The sum over powers of 7 can be done exactly!
\\ 7 g 7 Eavd o 7 PO AR

— S — —_—

OO + 00

Flany) — Z i) Fi(r) = Z T ag,

k=0 n=0

[Costin et alOl-13; IASchiappa,Vonk to appear]



ANALYTIC TRANSSERIES SUM

+00 —+ 00

Flor)=Y 2 Flr)  FRm) =3

k=0 n=0

Recursive calculation:

Lambert-W function
Wi(z)eW® =g

Polynomials



CONNECTION TO ATTRACTOR

—+ o0

Flaml— e o
k=0

Choose 2z large enough to be In above regime, but small
enough to compare to attractor solution Fa:w(z) at early times

o Choose z offthereal axis 2z = zr + 125

» Analytically continue attractor solution to complex plane

SO|V€ .F(Z,T) — FAtt(z) tO Qb‘taiﬂ T(Z) — ZTT i

.

/
| .
k Transseries parameter:

= —




CONNECTION TO ATTRACTOR

We obtain:

o~ —0.245 — 0.01281

Imaginary part approximates the
value from ambigurty cancelation

S
Im(o)-—
(0) >
0.25

0.1

~0.1

~0.2"

reme—lo T0) —|— 7'12_1 —|— 7'22_2 —|— 7'32_3 —|— 7'42_
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4.
FUTURE DIRECTIONS



OPEN RUESTIONS

Transseries In gauge theories

* asymptotics with multi-parameters
* Interpretation of non-perturbative contributions

Transseries summation and multiple scales

* different summations give rise to fast and slow scales
* boundary layers, initial value problems

Analytic properties of asymptotic observables

* phase transitions
* role of inrtial conditions
* probe of dualities






