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PLAN

1. Why do we need string field theory?

2. Formulation of string field theory
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In the conventional world-sheet approach to string theory, the
scattering amplitudes with n external states take the form:∑

g≥0

(gs)2g
∫

Mg,n

Ig,n

Mg,n: Moduli space of genus g Riemann surface with n punctures

Ig,n: an appropriate correlation function of vertex operators and
other operators (ghosts, PCOs) on a genus g Riemann surface.

– typically a divergent integral near the boundaries of Mg,n.

×
×
×

×
×
×

×
×

Separating Non-separating
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Example: Consider N tachyon amplitude in bosonic string theory

∝
∫ N∏

i=4

d2zi

∏
i<j

|zi − zj|pi.pj

This integral diverges if pi.pj < −2 for any pair (i,j).

Conventional approach is to define this using analytic
continuation

– not useful for numerical evaluation or putting bounds.

There are more severe divergences in higher genus that cannot
be treated with analytic continuation.

String field theory provides a way to systematically remove all
these divergences.
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Mathematical description: Sewing at a pair of punctures

– either on different surfaces or on the same surface

1. Take local complex coordinates w1 and w2 around the
punctures.

2. Sew them using the relation:

w1w2 = q ≡ e−s−iθ, s ≥ 0, 0 ≤ θ < 2π

– sews |w1| = |q|1/2 with |w2| = |q|1/2.

As w1 → 0 we emerge at large w2.

Region of divergence: q→ 0, i.e. s→∞
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String field theory is a quantum field theory with infinite number
of fields in which perturbative amplitudes are computed by
summing over Feynman diagrams.

Each Feynman diagram can be formally represented as an
integral over the moduli space of a Riemann surface with

– the correct integrand Ig,n (as in world-sheet description)

– but only a limited range of integration.

Sum over all Feynman diagrams reproduces the integration over
the whole moduli space Mg,n.
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Contribution to n-string amplitude from elementary n-string
interaction vertex has the form∑

g≥0

(gs)2g
∫

Rg,n

Ig,n

Rg,n: A subspace of Mg,n that excludes regions around all
boundaries

– does not suffer from any divergences.

Propagator: Generalization of N/(k2 + m2) for some numerator
factor N:

N (L+
0 )−1 δL−0 ,0

, L±0 ≡ (L0 ± L̄0)

We could (formally) represent this as

N
1

2π

∫ ∞
0

ds e−sL+
0

∫ 2π

0
dθ e−iθ L−0
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Now consider a general Feynman diagram containing
propagators and vertices

– contains integrals coming from lower order vertices, and two
integrals coming from each propagator (momentum integrals
already performed)

Together they have interpretation of integration over Mg,n with
the correct integrand.

Sum of all Feynman diagrams:∑
g≥0

(gs)2g
∫

Mg,n

Ig,n

Boundaries of Mg,n correspond to s→∞ limit in one or more
propagators

– sources of divergence
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1
L+

0
δL−0

=
1

2π

∫ ∞
0

ds e−sL+
0

∫ 2π

0
dθ e−iθ L−0

1. For L+
0 < 0 the left hand side is finite but the right hand side is

divergent (as s→∞)

2. For L+
0 = 0 both sides are divergent.

All divergences appearing in the world-sheet description have
their origin in one of these two cases

– divergences appearing at the boundary of Mg,n where the
Riemann surface degenerates
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1
L+

0
δL−0

=
1

2π

∫ ∞
0

ds e−sL+
0

∫ 2π

0
dθ e−iθ L−0

Divergences coming for L+
0 < 0 are fake

– resolved in string field theory by using the left hand side
instead of the right hand side.

The divergences we encountered in the Koba-Nielsen amplitude
are of this kind.
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1
L+

0
δL−0

=
1

2π

∫ ∞
0

ds e−sL+
0

∫ 2π

0
dθ e−iθ L−0

Divergences coming from L+
0 = 0 are genuine since both sides

diverge

– divergences associated with poles of propagators in QFT.

In string field theory, we can use the usual understanding of
such divergences in QFT to remove these divergences

– can be used used to understand both the origin and resolution
of these divergences.
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Examples: Pius, Rudra, A.S.; A.S.

1. Mass renormalization

2. Vacuum shift
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Mass renormalization:

In a quantum field theory, self energy insertions on external legs
need special treatment.

ll l
The internal propagators, being on-shell, diverge.

Steps required:

1. Separate graphs with self-energy insertions on external lines

2. Resum to compute off-shell 2-point function

3. Look for pole positions to find renormalized mass

4. Use LSZ prescription to compute S-matrix
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In the usual world-sheet approach we do not do any of this.

Result: integration over Mg,n diverges from the separating type
degeneration.

×
×

×
×

For a given amplitude, the usual world-sheet description of
string perturbation theory gives one term at every loop order

– usually considered an advantage, but this does not allow us to
separate the self-energy graphs and resum.

String field theory deals with this problem exactly as in ordinary
quantum field theory.
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Vacuum shift:

Suppose we have massless φ3 theory in which one loop
correction generates a term linear in φ:

V = A g−2
s φ3 − Bφ

A,B: constants, gs: coupling constant

Naive perturbation theory diverges.

Correct procedure: Expand the effective action around the
minimum at φ = gs

√
B/3A and derive new Feynman rules.

Not possible in usual string perturbation theory since we do not
have separate tadpole graphs. 15



Result: Tadpole divergence in integration over Mg,n.

×

×
×

In contrast, in string field theory we can deal with this situation
by following the standard procedure in quantum field theory.
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Review: arXiv:1703.06410: Closed heterotic and type II strings
Corinne de Lacroix, Harold Erbin, Sitender Pratap Kashyap, A.S., Mritunjay Verma

Field theory of open and closed superstrings: to appear
Faroogh Moosavian, A.S., Mritunjay Verma
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General structure of
string field theory
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Begin with classical closed bosonic string field theory
Saadi, Zwiebach; Kugo, Suehiro; Sonoda, Zwiebach; Zwiebach; · · ·

A string field ψ is an element of some vector space H.

H is a subspace of the full Hilbert space of matter and ghost
world-sheet CFT, defined by the constraints:

b−0 |ψ〉 = 0, L−0 |ψ〉 = 0, ng|ψ〉 = 2|ψ〉

b±0 = b0 ± b̄0, L±0 = L0 ± L̄0, c±0 =
1
2

(c0 ± c̄0)

ng = ghost number

Matter CFT: Any CFT with c=26.

Note: No physical state constraint on |ψ〉
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If {|φr〉} is a basis in H, then we can expand |ψ〉 as

|ψ〉 =
∑

r

ψr|φr〉

ψr are the dynamical degrees of freedom

– path integral ≡ integration over the ψr ’s

∑
r includes integration over momenta along non-compact

directions

⇒ makes ψr into fields (in momentum space)
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Classical action (setting gs = 1):

S =
1
2
〈ψ|c−0 QB|ψ〉+

∑
n

1
n!
{ψn}

QB: BRST charge

For |Ai〉 ∈ H, {A1 · · ·An} is constructed from correlation
functions of the vertex operators Ai on the sphere, integrated
over a subspace R0,n of the moduli space M0,n.

1. Since Ai’s are off-shell, the correlation function depends on
the choice of world-sheet metric, or equivalently the choice of
local coordinate system z in which the metric = |dz|2 locally.

2. The subspace R0,n avoids all degenerations, and its choice is
correlated with the choice of local coordinates in step 1.

Different choices (z, R0,n) give equivalent string field theories
related by field redefinition
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S =
1
2
〈ψ|c−0 QB|ψ〉+

∑
n

1
n!
{ψn}

This action has infinite parameter gauge invariance of the form

δ|ψ〉 = QB|λ〉+ · · ·

|λ〉 represents gauge transformation parameter.

This theory can be quantized using Batalin-Vilkovisky (BV)
formalism

– introduces ghosts and anti-fields
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Net result: Relax the constraint on the ghost number of |ψ〉.

The action has similar structure:

SBV =
1
2
〈ψ|c−0 QB|ψ〉+

∑
n

1
n!
{ψn}

But now {A1 · · ·An} contains contribution from integrals over
subspaces of Mg,n for all g

The higher genus contributions are needed to cancel gauge
non-invariance of the path integral measure.

Note: We shall continue to use the symbols

H for this extended Hilbert space carrying arbitrary ng

|ψ〉 for the extended string field ∈ H

{A1 · · ·An} for the new, quantum corrected product.

23



In Siegel gauge b+
0 |ψ〉 = 0, the action takes the form:

Sgf =
1
2
〈ψ|c−0 c+

0 L+
0 |ψ〉+

∑
n

1
n!
{ψn}

Propagator:

b+
0 b−0

1
L+

0
δL−0

= b+
0 b−0

1
2π

∫ ∞
0

ds e−sL+
0

∫ 2π

0
dθe−iθ L−0

Second step is valid only for L+
0 > 0.

Once we have the propagator we can compute amplitudes using
Feynman diagrams.
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Each Feynman diagram has vertices and propagators.

We have some integrals from the vertices (integration over
subspaces of Mg′,n′ ).

g′,n′ refer to individual vertices

We also have two integrals from each propagator (s, θ)

Together the total set of integrals can be interpreted as integral
over a subspace of Mg,n with the correct integrand

(g,n) refer to the full amplitude

Sum over all Feynman diagrams generate integration over the
full moduli space Mg,n with the correct integrand
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Instead of summing over all Feynman diagrams, one could sum
over only one particle irreducible (1PI) diagrams

– gives 1PI effective action

S1PI =
1
2
〈ψ|c−0 QB|ψ〉+

∑
n

1
n!
{ψn}1PI

The definition of {A1 · · ·An}1PI remains similar to that of
{A1 · · ·An}, except that the subspace of Mg,n that we integrate
over is larger

– includes boundaries of the moduli space that are
non-separating type

(degenerating cycle that does not split the Riemann surface into
two disconnected parts.)
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Separating Non-separating

Note: For bosonic string theory, the 1PI effective action is a
formal object due to tachyons propagating in the loop.

But there will be no such problem in heterotic and type II
theories.
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Heterotic string theory:

World-sheet theory contains β, γ ghosts and associated ξ, η, φ
system after bosonization

β = ∂ξ e−φ, γ = η eφ

Hilbert space H splits into direct sum ⊕nHn

n: picture number

– integer for NS sector, integer + 1/2 for R sector

Picture changing operator (PCO) Friedan, Martinec, Shenker; Knizhnik

X (z) = {QB, ξ(z)}
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Heterotic string field theory: A.S.

Introduce a pair of string fields

|ψ〉 ∈ H−1 +H−1/2, |φ〉 ∈ H−1 +H−3/2

Action

S = 〈φ|c−0 QB|ψ〉 −
1
2
〈φ|c−0 QBG|φ〉+

∑
n

1
n!
{ψn}

G=Identity in NS sector, G = X0 ≡
∮

dz z−1 X (z) in R sector
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S = 〈φ|c−0 QB|ψ〉 −
1
2
〈φ|c−0 QBG|φ〉+

∑
n

1
n!
{ψn}

{A1 · · ·An} is defined as in bosonic string theory, with the extra
ingredient that we have to insert certain number of PCO’s to
conserve picture number

Total picture no: (2g-2) on a genus g Riemann surface

Different string field theory actions, associated with different
choices of PCO locations, are related by field redefinition.
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〈φ|c−0 QB|ψ〉 −
1
2
〈φ|c−0 QBG|φ〉+

∑
n

1
n!
{ψn}

Note: We have doubled the number of degrees of freedom (|φ〉
and |ψ〉)

However since |φ〉 enters the action at most quadratically, it
describes free field degrees of freedom

– completely decouples from the interacting part of the theory
described by |ψ〉

– has no observable effects.

Quantization of this theory proceeds in the same way as in
bosonic string theory.

31



For type II string theory the structure of the theory is similar.

|ψ〉 ∈ H−1,−1 ⊕H−1,−1/2 ⊕H−1/2,−1 ⊕H−1/2,−1/2

|φ〉 ∈ H−1,−1 ⊕H−1,−3/2 ⊕H−3/2,−1 ⊕H−3/2,−3/2

S = 〈φ|c−0 QB|ψ〉 −
1
2
〈φ|c−0 QBG|φ〉+

∑
n

1
n!
{ψn}

G: identity in NSNS sector, X0 in NSR sector,

X̄0 in RNS sector, X0X̄0 in RR sector
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The tree level ψ-ψ propagator has standard form in the ‘Siegel
gauge’

(L0 + L̄0)−1 b+
0 b−0 G δL0,L̄0

We could (formally) represent this as

b+
0 b−0 G

1
2π

∫ ∞
0

ds e−sL+
0

∫ 2π

0
dθ e−iθ L−0

and (formally) recover the usual representation of amplitudes as
integrals over Mg,n.

But we could also regard string field theory as a field theory with
infinite number of fields and momentum space propagator

(k2 + M2)−1 × polynomial in momentum

The polynomial comes from matrix element of b+
0 b−0 G.
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k1 k2

k3kn · · ·

Vertices are accompanied by a suppression factor of

exp

[
−A

2

∑
i

(k2
i + m2

i )

]

A: a positive constant whose precise value depends on the
choice of coordinate system used to define the off-shell vertex.

Hata, Zwiebach

This makes

– momentum integrals UV finite (almost)

– sum over intermediate states converge
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Momentum dependence of vertex includes

exp

[
−A

2

∑
i

(k2
i + m2

i )

]
= exp

[
−A

2

∑
i

(~k
2

i + m2
i ) +

A
2

(k0
i )2

]

Integration over ~ki converges for large |~ki|, but integration over
k0

i diverges at large |k0
i |.

The spatial components of loop momenta can be integrated
along the real axis, but we have to treat integration over loop
energies more carefully.
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Resolution: Need to have the ends of loop energy integrals
approach ±i∞.

In the interior the contour may have to be deformed away from
the imaginary axis to avoid poles from the propagators.

Complex k0-plane

×
×

We shall now describe how to choose the loop energy
integration contour.
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General procedure: Pius, A.S.

1. Begin with a configuration of off-shell external momenta
where all energies are imaginary and all spatial momenta are
real.

2. In this case we can take all loop energy contours to lie along
the imaginary axis without encountering any singularity.

3. Now deform the energies to real values (Wick rotation)

4. If some pole of a propagator approaches the loop energy
integration contours, deform the contours away from the pole,
keeping their ends at ±i∞.

Result: Such deformations are always possible

– the loop energy contours do not get pinched by poles from two
sides during this deformation.
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Applications
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Consider N tachyon amplitude in bosonic string theory

∝
∫ N∏

i=4

d2zi

∏
i<j

|zi − zj|pi.pj

This integral diverges if pi.pj < −2 for any pair (i,j).

In string field theory these divergences can be associated with
L+

0 < 0 states propagating in the internal line.

We need to represent the propagator by 1/L+
0 instead of using

Schwinger parametrization.
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This suggests a specific procedure.

1. Remove all regions where 2 or more zi’s approach each other

|qk| ≥ εk for fome small positive constants εk

– gives a finite integral over some region R with boundary Bk
corresponding to |qk| = εk.

2. The missing regions are compensated for by adding boundary
terms.

Also need additional boundary terms where two boundaries
intersect etc. ∫

R
I +

∫
Bk

Ik +

∫
Bk∩B`

Ik` + · · ·

– an alternative to analytic continuation.
40



If I denotes the bulk integrand, then the contribution on the k-th
boundary Bk is given by∫

Bk

Ik, dIk = −I near Bk

String field theory also gives a specific procedure for
constructing Ik.

If the boundary is at qk = 0 and if I behaves near qk = 0 as

I =
∑

n

an qbn
k q̄cn

k dqk ∧ dq̄k ∧ dV

then we can take

Ik = −
∑

n

an (bn + 1)−1 qbn+1
k q̄cn

k dq̄k ∧ dV

On the intersection Bk ∩ B` we have to add∫
Bk∩B`

Ik`, dIk` = I` − Ik near Bk ∩ B`

etc. 41



The boundary terms correspond to Feynman diagrams with one
or more internal propagators.

The bulk term corresponds to the elementary N-string vertex.

Any ambiguity in determining Ik by solving dIk = −I etc. cancels
in the final expression.
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List of applications made so far:

1. Proof of unitarity Pius, A.S.

2. Finding the domain of analyticity of the S-matrix
De Lacroix, Erbin, A.S.

3. Systematic procedure for dealing with vacuum shift and mass
renormalization

4. String theory in RR background Cho, Collier, Yin

– begin with string theory in NSNS background described by a
world-sheet CFT, and then study the effect of RR background by
giving vev to RR fields
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