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� Black holes.....

• Gravity Waves has opened a window to the blackness or darkness.

• Questions around black holes (BH) touches upon the deepest issues

in our understanding of notions like spacetime, Quantum Theory

and Gravity.

• Observationally, BHs appear in a wide range of mass and spin in

many physically relevant systems.

• Theoretically, BHs constitute a big class of known solutions to

(Einstein’s) General Relativity (GR).
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• BH solutions come in various families with very different properties.

• Regardless of the details, classically

any BH has horizon which separates spacetime into two causally

disconnected regions, inside and outside.

• Semiclassically BHs have a thermodynamical description:

they Hawking-radiate and have entropy and evolve as governed by

laws of thermodynamics.

• Unitarity of this evolution at quantum level necessitates existence

of BH microstates.
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� Equivalence Principle and Diffeomorphisms

• Einstein GR is based on Equivalence Principle which stipulates that

all observers should give (exactly) the same description of local

events in regions of spacetime to which they have causal access.

• Each observer is specified by a coordinate system and vice versa.

• Equivalence Principle at theory level is made manifest through gen-

eral covariance, invariance of the action under diffeomorphisms.
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• Physical observables in the Einstein GR are all defined through
local diffeomorphism invariant quantities.

• In particular, any two metric tensors related by diffeomorphisms are
physically equivalent:

xµ → xµ + ξµ(x), gµν → gµν + δgµν, δgµν = ∇µξν +∇νξµ

• The above is shared between all theories with local gauge symme-
tries: Action and physical observables should be gauge invariant.

• Gauge symmetry is in fact a redundancy of description which should
be removed by gauge fixing, but yet, there may be nontrivial gauge
transformations for a prescribed falloff and boundary conditions and
boundary terms.
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• Among thermodynamical quantities entropy is very special:

it is the only extensive, dimensionless and observer independent quantity.

• Note: “corrections” to entropy may be ensemble dependent.

• While may not agree on mass (energy), angular momentum, tem-
perature, all observers must measure the same value for entropy,

• Features and expectations of BH entropy

– It should be accounted by the BH microstates

– Its ubiquity is a result of ubiquitous property of BHs, the horizon.

– For the cases with Killing horizon, BH entropy is a conserved
(Noether) charge given by the Wald formula. It reduces to the
Bekenstein-Hawking area law for the case of Einstein gravity.
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• According to Wald’s derivation, black hole entropy depends only on

the BH solution (metric) and the gravitational part of the action.

• Intensive thermodynamical quantities like temperature and horizon

angular velocity only depend on the metric and ,

• Extensive quantities like, mass and angular momentum depend on

metric and the gravitational part of the theory.
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• From the above one can deduce

A) Entropy of a classical, large BH is a gravitational effect and

BH microstates should be sought for ONLY in the gravitational

sector.

B) Recalling the uniqueness theorems, not all the physically observ-

able gravitational effects can be removed in a local accelerating

frame, hence

C) the simple and strong statement of Equivalence Principle should

be amended.
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� “Softly” moving away the equivalence principle

• Diffeo’s are ‘’local redundancies”. There are, however, nontrivial

diffeo’s to which one can associate well-defined surface charges not

measured by local observables/observations.

• To extract the non-trivial diffeo’s and the associated surface charges

we may use covariant phase space method (CPSM):

i) All field configurations (histories) may form a Phase Space,

ii) with the symplectic structure systematically constructed from

the action of the theory:
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• Consider a field configuration Φ and perturbations around it δΦ.

• On-shell field configurations Φ̄ satisfy field equations and

on-shell perturbations δΦ satisfy linearized field equations.

• Set of Φ and δΦ may be viewed as a phase space and one-forms

in the corresponding cotangent space.

• On-shell cotangent space includes two important directions:

– δΦ generated by gauge and/or diffeo’s transformations on Φ;

– parametric variations, generated by moving in the parameter

space of the solutions Φ, e.g. the difference between two Sch’d

solutions with masses m and m+ δm.
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� Symplectic structure

• Symplectic current ω is a finite, closed, nondegenerate two-form

over tangent space and a d− 1 form in space time:

ω = ω[δ1Φ, δ2Φ; Φ]

• Symplectic structure ΩΣ is defined through integration of ω over

a Cauchy surface Σ:

ΩΣ [δ1Φ, δ2Φ; Φ]=
∫
Σ ω[δ1Φ, δ2Φ; Φ]

• We build ω within the covariant phase space method, constructed

in [Lee-Wald ’1990, Wald ’1993] and refined in [Barnich-Brandt

’2002, Barnich-Compère ’2008].
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� Construction of the symplectic current

• Presymplectic potential θ[δΦ; Φ]: ω = δθ, or

ω[δ1Φ, δ2Φ; Φ] = δ1θ[δ2Φ; Φ]− δ2θ[δ1Φ; Φ]

• The presympelctic structure θ is a spacetime d − 1 form and a

one-form over the phase space.

• The Lee-Wald contribution to θ:

δL|on−shell = dθ(LW ).
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• Consistency of symplectic structure may require addition of bound-

ary terms Y:

θ = θ(LW ) + dY.

Y is a d− 2 form on spacetime and one-form on phase space.

• Consistency of symplectic structure means its

– Conservation:

dω[δ1Φ, δ2Φ; Φ] ≈ 0 for all on-shell fields and perturbations.

– Non-degeneracy: ΩΣ has no degenerate directions, is conserved

and is independent of Σ.
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� The conserved charges

• Fundamental Theorem of Covariant Phase Space Method

ω[δΦ, δχΦ; Φ] ≈ dKχ[δΦ; Φ]

• δχΦ is a specific transformation generated by a symmetry χ,

• K is a spacetime d−2 form, while a one-form on the tangent space

of the phase space.

• Given K one can define charge variations:

δQχ =
∮
∂Σ
Kχ[δΦ; Φ]
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• Charge Qχ is integrable if

δ1δ2Qχ − δ2δ1Qχ = 0

Integrability [Lee-Wald ’1991]:

∮
∂Σ

χ·ω[δ1Φ, δ2Φ; Φ] = 0, ∀χ, δΦ

There usually exists Y terms which guarantee the above.

• Using integrability one can define surface charges Qχ:

Qχ[Φ] =
∫
γ

∮
∂Σ
Kχ[δΦ; Φ] +Nχ[Φ]

where N is the zero point charge.

• If δQχ is zero everywhere on the phase space, χ is called pure gauge
transformation. These are the “real gauge d.o.f”.
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• The charges are given by surface integrals over the boundary of

the Cauchy surface ∂Σ.

• The charge Qχ is non-zero if Cauchy surface is non-compact.

• Examples of ∂Σ:

– Flat d dimensional Minkowski space: is the d − 2 dimensional

sphere at infinity, i0.

– Sch’ld black hole: ∂Σ = H∪i0, where H is the bifurcate horizon.

– AdS-Sch’ld BH: ∂Σ = H ∪ Sd−2
b’dry.

(Note: AdS is not globally hyperbolic and hence one should take

special care here.....)
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• Algebra of charges:

{Qχ, Qξ} = Q[χ,ξ] + possible central terms

• Notes:

– Charges are functions over the phase space,

– the bracket is Poisson bracket among these functions, and

– [χ, ξ] is the Lie bracket of generators.

• The charges Qξ may be used to label states/configurations in the

phase space, and hence how to account for them.
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� Focusing on BHs, e.g. generic Kerr black hole,

• How can we describe BH thermodynamics in terms of these con-

served charges?

• what are non-trivial diffeos and what is their algebra?

• How do we specify our phase space?

• How can this resolve the BH microstate problem?
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� General picture and results for BH thermodynamics

• ∂Σ has two separated parts H and i0.

• We can hence have two distinct set of charges, the Near Horizon
(NH) charges and the asymptotic (AS) charges.

• Common part of the two accounts for mass and angular momenta
associated with exact symmetries of the BH background solution.

• Smoothness of the geometry implies that NH and AS observers
should measure the same exact charges.

• We can understand thermodynamics of stationary BHs only in
terms of these exact charges, assoicated with Killing/exact sym-
metries.
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• Exact charges are symplectic symmetries and may be computed on

any codimension to compact surface. [Hajian-MMShJ, 2015].

• First law of thermodynamics for stationary BHs with Killing horizon

is generically reduced to the equation relating Killing vectors, .e.g

for Kerr BH

ζ =
1

κ
(ξt + Ωξφ)

• 1/κ factor is necessitated by integrability of the charge associated

with ζ, the entropy.
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� General picture/idea and results for BH microstates

• States charged under non-trivial residual diffeos are soft, they com-

mute with the Hamiltonian.

• We hence have NH soft hair and AS soft states/config’s.

• NH soft hair account for BH microstates while AS soft states are

irrelevant to the BH entropy.

• NH soft modes weakly interact with each other.

• NH and AS soft states also weakly interact at quantum level. (Re-

call the potential barrier separating the NH and AS regions.)
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� Summary of results[D. Grumiller, A. Perez, MMShJ, R. Troncoso,

C. Zwikel, coming soon]

• For Sch’ld or Kerr BH, AS algebra is BMS4 and we find that NH

algebra consists of NH APD’s and “Horizon superrotations” plus

“supertranslations”.

• Besides our NH boundary (falloff) conditions, depending on what

we keep fixed on the horizon, we get a different algebra.

• This is like moving between different ensembles in stat. mech.

• Our NH analysis is true for generic (non-degenerate) black hole or

cosmological horizons.
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� Some details of charge analysis

• Any metric with a Killing horizon, in the NH region takes the form

ds2
NH = −κ2ρ2dt2 + dρ2 + Ωab(x)dxadxb + · · ·

where a, b = 1,2, · · · , d− 2.

• We assume the bifurcate horizon H (κ 6= 0) with metric Ωab, is

compact and non-degenerate detΩ 6= 0 with a finite volume.

• NH falloff behavior

gtt = −κ2ρ2 + O(ρ3), gtρ = O(ρ2), gta = ftaρ
2 + O(ρ3),

gρρ = 1 + O(ρ), gρa = fρa ρ+ O(ρ2), gab = Ωab + O(ρ),
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• The residual diffeo’s which respect these NH falloff behavior are

ξt =
η(t;x)

κ
+ O(ρ), ξρ = O(ρ2), ξa = ηa(t;x) + O(ρ2),

where ∂t + ηa∂aκ = δκ.

• η, ηa may be viewed as diffeo’s on a codimension one surface.

• Here we choose to work in Einstein gravity. But our results may

be readily generalized to any generally covariant higher derivative

theory.

• In our NH metric κ can be a function of t, xa.
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• Standard computation of charges leads to

δQ[η, ηa] =
∫
H
ηδP + ηaδJa

where

P =

√
Ω

8πG
, Ja =

√
Ω

16πκ G

(
∂tfρa − 2fta

)

• δQ[η, ηa] are integrable if η, ηa are field independent, but we have

other choices too.

• Charge variations

δP = ηa∂a P + P ∂aη
a,

δJa = P∂aη + Ja ∂bη
b + ηb ∂bJa + Jb ∂aη

b.
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• The charge algebra

{P(x),P(y)} = 0 as δηP = 0

{Ja(x), Jb(y)} =

(
Ja(y)

∂

∂xb
− Jb(x)

∂

∂ya

)
δd−2(x− y)

{Ja(x),P(y)} =

(
P(y)

∂

∂xa
− P(x)

∂

∂ya

)
δd−2(x− y)

• The charges P(x), Ja(x) are densities over the horizon H.

• Ja(x) generate general diffeomorphisms on the horizon.

• P(x) generate supertranslations on the horizon.
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� More on boundary conditions

• The above choice of η, ηa are not the only choices leading to inte-

grable charges.

• We may choose

η̃ = F (P, Jb)η + Fa(P, Jb)η
a, η̃a = Ga(P, Jb)η +Gab(P, Jb)η

b,

with appropriate redefinition of charges

P̃ = P̃(P), J̃a = J̃a(Ja,P)

• Below we show two such examples.
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� NH “generalized BMS algebra”

Choose

η̃ ≡ η(r) = P−rη, P̃ ≡ P(r) =
Pr+1

r + 1
,

with η̃a = ηb, J̃a = Ja. Then

Q[η(r), η
a] =

∫
H

[
η(r)P(r) + ηaJa

]
yielding the algebra

{P(r)(x),P(r)(y)} = 0

{Ja(x), Jb(y)} =

(
Ja(y)

∂

∂xb
− Jb(x)

∂

∂ya

)
δd−2(x− y)

{Ja(x),P(r)(y)} =

(
rP(r)(y)

∂

∂xa
− P(r)(x)

∂

∂ya

)
δd−2(x− y)
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• The above is true in any dimension.

• There is no central term in the above NH algebras.

• If Ωab is topologically an Sd−2, Ja part of the algebra includes
d − 2 dimensional Euclidean conformal algebra so(d− 1,1), i.e. d

dimensional Lorentz algebra.

• For r = 0 and d = 3,4 this recovers the DGGP algebra [Donnay,
Giribet, Gonzalez, Pino, 2015, 2016].

• For r = 1, d = 3 we recover BMS3.

• For d = 3, generic r, we get W (0;−r) algebra [Parsa, Safari,
MMShJ, 2018].
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• For d = 4, if restrict

Ωab = Φ2 ΩS2

ab

• for r = 1/2 we get BMS4.

• For generic r we get W(-r/2,-r/2;-r/2,-r/2) [Safari, MMShJ, 2019].

• For d > 4 restricting horizon metric Ωab to confrmally sphere ones,

for r = 1
d−2 we get an algebra which may be called BMSd.

• For generic r we get a higher spin version of BMS, “supertransla-

tions P have generic spin s = r(d− 2).
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� NH Heisenberg-like algebra, another special case:

• Define

ηa
H

=
√

Ω ηa, J
H

a =
Ja√
Ω

• J
H
a is a one-form (not a density).

• Then

QH[ηH, η
a
H

] =
∫
H
ηHP + ηa

H
J

H

a

with

δP =
1

8πG
∂aη

a
H

δJ
H

a =
1

8πG

[
∂aηH −

ηb
H

P

(
∂aJ

H

b − ∂bJ
H

a

)]
, ηH = η + ηaJ

H

a .

• QH become integrable if we assume ηH, η
a are field independent.
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{P(x),P(y)} = 0

{J
H

a(x), J
H

b (y)} =
1

8πG P(x)
Fba(x)δd−2(x− y)

where Fab(x) ≡ ∂aJ
H

b (x)− ∂bJ
H
a(x)

{J
H

a(x),P(y)} =
1

8πG

∂

∂xa
δd−2(x− y)

The above implies

{Fab(x),P(y)} = 0.
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• If Fab(x) = 0, e.g. as in the Sch’ld case, then

J
H

a(x) ≡ ∂aQ(x).

• Hence {Q(x),Q(y)} = 0 and

{Q(x),P(y)} =
1

8πG
δd−2(x− y)

• Upon “quantization,” replacing {, } with −i[, ], the NH algebra re-

duces to “a Heisenberg type algebra”, with ~ equal to 1/(8πG).

• In general, one can decompose the one-form J
H
a into exact and

coexact parts. The exact part Q is the “conjugate” to P.
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• NH Hamiltonian

HNH = QH[ηH = κ ≡ η0, η
a
H

= 0] =
∫
H
κP ≡ κP0

• P0 commutes with all the other charges as δη0P = 0, δη0J
H
a = 0.

• Therefore, all states charged under P, J
H
a are soft.

• Note that the above happens only for the “Heisenberg-type” bound-

ary conditions, generically the near horizon Hamiltonian need not

commute with the other charges.

• “Heisenberg-type” boundary conditions are hence more natural.
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• The BH (Bekenstein-Hawking) entropy and the NH first law

SBH = 2πP0 =
1

4G

∫
H

√
Ω =

Area

4G
,

dHNH = TH dSBH, TH =
κ

2π

• Entropy must be a charge commuting with all the charges labelling

microstates.

• The above is true for any horizon in any dimension.

• Had we used a more general theory of gravity, we would recover

Wald’s entropy.

37



I 4d Kerr and NUT BHs, example

• In this case J
H
a does not have an exact part and

P =
2Mr+

8πG
sin θ, J

H

a = ε ba ∂bψ

where

ψ =
1

8πG

[
2 arctanU +

r+ − r−
2M

U

]
, U =

√
r−/r+ cos θ.

• For the Kerr case,
∫
H
F = 0.

• One can show that the NUT charge is proportional to
∫
H
F .
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Discussion, Concluding Remarks and Outlook
——————————–

~ The need for revisiting Einstein General Invariance:

• Not all diffeomorphic/gauge equivalent field configurations are phys-
ically equivalent.

• Only a measure-zero subset of gauge transformations, defined on
codimension two surfaces can be non-trivial.

• This codim. two surface may or may not be the boundaries of
Cauchy surfaces ∂Σ; it may be bifurcation surface of a horizon.

• One may distinguish classes of gauge equivalent/diffeomorphic con-
figurations by the non-local surface charges labelling them.
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• In view of these charges one should extend the physical Hilbert

space of the theory:

H = Hlocal gauge inv. ⊗Hsoft

• Their number is infinite (coming from continuous local transfor-

mations).

• They form an algebra which may admit central extensions.

• For the case of black holes,

∂Σ = H ∪ i0, Hsoft = Hhorizon ∪H∞.

40



~ Question: Are these charges and their algebra gauge invariant? Do
they depend on the choice of gauge fixing and “boundary conditions”?

• Presence of surface charges do not change the n-p’t functions of
local gauge invariant operators, or the S-matrix.

~ Question: Do these charges have any physical relevance?

• Quantum Gauge Field and Gravity Theories

– memory effect;

– “soft theorems” and IR dynamics of gauge theories;

– identifying and counting of BH microstates;

– resolving the BH unitarity problem?!
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• Working within Hawking-Perry-Strominger “soft hair” paradigm,
we have over shooting problem: there are too many soft states,

We need to cut the soft hair off

• In series of our works on 3d BHs, we made horizon fluff proposal in
which we proposed a way for the cutoff.[Afshar, Grumiller, MMShJ,
2016; MMShJ, Yavartanoo, 2016 & Afshar, Grumiller, MMShJ,
Yavartanoo, 2017].

• A paper of today [W. Merbis, D. Grumiller] have elaborated further
on the cutoff procedure.

• We also extended horizon fluff proposal to 4d extremal Kerr BH
[Hajian, MMShJ, Yavartanoo, 2017].

• Key question in the horizon fluff proposal is to single out a set of NH
soft hairs which “add up” giving the mass and angular momentum.
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• Thermodynamical features of large classical BHs are universal.

• It is hence expected that the BH microstate identification should

have a universal answer.

• With this motivation, we made such a universal analysis for NH

soft charges, algebras and states.

• There are various consistent choices for the boundary conditions,

for a given NH falloff, yielding different NH Symmetry Algebras.

• Our NH SA, includes generic diffeos on d − 2 dim. bifurcation

horizon surface, plus a supertranslation part.
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• Our NH SA includes BMSd, without a central term, as a subalgebra.

• We also have a generic Heisenberg-type algebra, with 1/(4G) play-

ing the role of Planck’s constant.

• One can compute the on-shell boundary action:

IB =
∫
dtdd−2x

(
NH P + Na

H
J
H

a

)

where NH ,N
a
H

are the usual lapse and shift functions.

• The above may be viewed as the “action” for a physical membrane

at the horizon, as membrane paradigm suggests.
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� NH SA and the membrane paradigm[D. Grumiller, MMShJ, 2018]

• The idea is that a universal question like BH microstates should

have a universal answer through membrane paradigm.

• That is, membrane action as “hydrodynamical” description of the

BH thermodynamics.

• Upon its “semiclassical” Bohr-type quantization we should be able

to identify BH microstates.

• Consider a d−2 dimensional brane wrapping the stretched horizon.
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• Membrane action is the volume it swips over the spacetime.

• The action is invariant under d−1 dimensional diffeos and the only
physical parameter in this action is membrane tension T .

• Fixing the static gauge on the membrane and choosing the natural
light-cone time coordinate

τ = t

• The membrane e Hamiltonian becomes

Hmembrane =
T

2π

∫
H

√
det Ω

• Comparing this with our HNH, we learn

T =
κ

4G
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Our proposal for BH microstates:

BH microstates are certain states among the near horizon soft hair

and

are indistinguishable (degenerate) from the asymptotic symmetry

viewpoint.

This Heisenberg algebra arises as a result of Rindler wedge,

ubiquitously found in any nonextreme NH geometry.

Membrane paradigm may be providing the way to identify BH

microstates.

Thank You For Your Attention
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