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Introduction

field theories (CFTs) play an important role
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Introduction

BUT: most CFTs do not have small parameters in which
to do a perturbative expansion: couplings are O(l).

Difficult to access.
Possibilities: analytic (2d), conformal bootstrap (d>2),
lattice calculations, non-perturbative methods...

Make use of symmetries, look at special limits/
subsectors where things simplify.

Here: study theories with a global symmetry group.
Hilbert space of the theory can be decomposed into
sectors of fixed charge Q under the action of the global
symmetry group.

Study subsectors with large charge Q.

Large charge Q becomes controlling parameter in a
perturbative expansion!



Introduction

The large-charge approach consists of 2 steps:

| identify the possible fixed-charge symmetry breaking
patterns for a given order parameter

2. write an effective action for the low-energy DOF and
compute physical quantities

Step |:start from the global symmetries of the system
and how they act on the order parameter.

For example, in the superfluid transition of 4He, it is
known that the system has an O(2) symmetry.
Assume that, just like in the UV, the order parameter is
a complex scalar that transforms the same way under

O(2).



Introduction

Write down Wilsonian effective action. In general:
infinitely many terms - not so useful.
Make self-consistent truncation at large charge:

* Set a cutoff A\ obeying __~ space dimension
typical scale of the 1 1 Qv
system \‘Z <K A < % — T

* write a linear sigma model action for the order
parameter.Work at criticality: impose scale invariance
of the action, assuming that the fields have vanishing
anomalous dimension (at leading order in 1/Q)

* determine the fixed-charge ground state

* compute the quantum fluctuations to verify that they
are parametrically small when Q >> |.



Introduction

In a sector of fixed charge, the classical solution around
which the quantum fluctuations are computed will

generically break both spacetime (Lorentz) and global
symmetries: Goldstone bosons

Step 2: write down EFT encoded by Goldstones.
Similar techniques to chiral perturbation theory.
Important difference: the symmetry breaking comes
from fixing the charge (NOT dynamical).

Use EFT to calculate the CFT data (anomalous
dimensions, 3-pt functions).

Wilsonian action has only a handful of terms that are
not suppressed by the large charge. Useful!



Introduction

Some questions:

Does it work!?

For what kinds of theories does it work!?

In how many space-time dimensions!?

For what kinds of global symmetries does it work!?
What happens if we fix several charges
independently?

What can we learn via this approach?



Overview

Introduction
The O(2) model
semi-classical treatment
quantum treatment
results and lattice comparison
Beyond O(2)
O(2n) vector model
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non-relativistic CFTs
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The O(2) model



The O(2) model

Consider simple model: O(2) model in (2+1) dimensions
Loy = 0,¢" "¢ — g*(¢"¢)°

Flows to Wilson-Fisher fixed point in IR.

Assume that also the IR DOF are encoded by cplx scalar

Global U(l) symmetry:  @rr =ae™  x — x + const.

Look at scales: put system in box (2-sphere) of scale R
Second scale given by U(l) charge Q: p'/? ~ QY?/R

Study the CFT at the fixed point in a sector with

| 1/2 UV scale
= <AL QR < 2

cut-off of effective theory
Write Wilsonian action.




The O(2) model

Assume large vev for a: A<’ «g?
scalar curvature

RAQ/A

Lig = 2 0,a0"a+ $b%a” 0, O x — 1_671 gaG + higher derivative terms

dimensionless constants
Lagrangian is approximately scale-invariant.

 has approximately mass dimension |/2 and the action
has a potential term o |¢|°

Do semi-classical analysis: solve classical e.o.m. at fixed

Noether charge.
~ oLr
= =
Classical solution at lowest energy and fixed global

charge becomes the vacuum of the quantum theory.

b2a’x Q ~ 47 R*bV/ \a*



The O(2) model

Classical solution: non-const. vev

@=v,  (=p=gog ()=t

Fixed-charge ground state is homogeneous in space.
Determine radial vev v by minimizing the classical

potential: (Q ) 2 1 p \

| 2 76
chl(v) Vclass — ! VT + <0

202 16 6
N~

v

centrifugal term

1 ~ Q1/4
large condensate is
compatible with our
assumption a > 1
s ,01/2
v)

(V)




The O(2) model

Ground state at fixed charge breaks symmetries:

expl. spont.

SO(L 4)spac:etime X 0(2)g10ba1 — SO(S)Space X D X O(Q)global — SO(?’)space X D/

D' =D — u0O(2)

Quantum story: study the low-energy spectrum
Parametrize fluctuations on top of the classical vacuum

X <+«—— Goldstone

X =pt+ =
U

a=7v-+a
massive mode, not relevant
for low-energy spectrum m ~ O(v/Q)

Go to NLSM: Integrate out a (saddle point for LO).
Dynamics is described by a single Goldstone field X:

L0 = kyya(8,x 9y)¥/? «— can get.this purely.by
dimensional analysis



The O(2) model

Use dimensional analysis and scale invariance to
determine (tree-level) operators in effective action
beyond LO (scalar operators of scaling dimension 3,
including curvatures of the background metric)

Use p-scaling to determine which terms appear:
Ox ~ pt% ... 0y~ p 4

O(p*?) O35 = | Ox |3 LO Lagrangian
, conf. inv. combination,
O(p'/?) : O1/2 = R|0x|+2 (9]9x) negative p-scaling

scale-inv. but NOT
conformally inv.

For homogeneous solutions, there are no other terms
contributing to the effective Lagrangian at non-negative

p-scaling for d>1.



The O(2) model
Result:

L = ks/5(0,x0"X)*? + k1 o R0, x0"x) " + O(Q~Y/?)

\

dimensionless parameters suppressed by inverse
powers of Q

To be understood as an expansion around the classical
ground state ut + x

Expand action to second order in fields:
L = ]{3/21LL3 + kl/gRILL + (875)2)2 — %(VSQ)%)Z + ...

Compute zeros of inverse propagator and get

dispersion relation: p
P Wp = % .— dictated by conf. invariance 1/v/d

Spontaneous symmetry breaking
= X is relativistic Goldstone (type |)

= superfluid phase of O(2) model



The O(2) model

Are also the quantum effects controlled?
All effects except Casimir energy are suppressed
(negative p-scaling)

Effective theory at large Q:

vacuum + Goldstone + |/Q-suppressed corrections
Energy of classical ground state at fixed charge:

2 dimensionless parameters (b, A)
RN

€3/2 3/2 €1/2 1/2 —1/2
Ex(Q) = @ RVVQ = +0(Q )
v/ V- 2

dependence on manifold




The O(2) model

Use state-operator correspondence of CFT:

R? R x G-
conformal cd1 He energy
dimension —™——|
N
Scl—1

Conformal dimension of lowest operator of charge Q:

one-loop vacuum
energy of Goldstone

C3/2 _
D(Q) =5 =@ +2vme12Q"% — 0094+ 0(Q)
S. Hellerman, D. Orlando, S. R., M. Watanabe, arXiv:1505.01537 [hep-th]
1 dw — 1 0.0937...
Eyse = — ) 21+ D log(w? +1(1+1)) = —1/2|5%) = —
v = g | g L@ DIon? I+ 1) = g2l = -2



The O(2) model

Our prediction:

D(@) = 5 2Q" +2/me15Q/? ~ 0094+ O(Q /%)
IndependentMconFrmatlon from the Iattlce
12
10 |
_ 8t :
2 | | Excellent
agreement!!
ol ¢3/2 = 1.195(10)
2 | VG data g 1 €172 = 0.075(10)
it
works for smallo/v 2 4 6 8 10
c h e rge * Wh)” 7 D. Banerjee, Sh. Chandrasekharan, D. Orlando [hep-th/1707.00711]

Large-charge expansion works extremely well for O(2).
Where else?
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Beyond O(2):
3d O(2n) vector model



Beyond O(2)

Where else can apply the large-charge expansion?
Try out other known CFTs/assume they exist.

= Obvious generalization in 3d: O(2n) vector model
non-Abelian global symmetry group: new effects

SU(N) matrix model in 3d.

Not many examples of (non-susy) CFTs known in 4d.
= Asymptotically safe CFT (UV fixed point)

Superconformal CFTs in 3d and 4d. Cases with moduli
space work differently!

= Non-relativistic CFTs (Schrodinger symmetry) in 3d, 4d



The O(2n) vector model

Generalize to O(2n).

2n
L=120,0"0"p" -1 (%R¢§+1—A2¢2>, a=1,....2n R; x R?
i=1
U(n) C O(2n)
1 . 1
¢1=ﬁ(gb1—l—z¢2), 90227(¢3+Z¢4)7 ceey

Fix £<n U(l) charges:

/dd "z (pip — i) = Q; = vol. X p;

Solution for homogeneous ground state:

@i:%Aiei“t, 7::1,...,]{,
©r+i =0, j=1,...,n—k, same for all fields!

—




The O(2n) vector model

Fixing k charges explicitly breaks O(2n) to
O(2n-2k) x U(k).

We can always rotate ()= J5(41,...,4x,0,...)

by a U(k) transformation into (o,...,0, \/“‘3+ +450,...)

Vacuum breaks symmetry spontaneously to
O(2n-2k) x U(k-1).

We also see that all homogeneous states of minimal
energy with fixed total charge (Q: +Q2+---+Qx) are
related by an U(k) transformation and have the same
energies (and conformal dimensions).

What happens if instead, we choose a configuration with
k different chemical potentials that cannot be rotated
into the state (0,...,0, %,0,...,0)?

J \ . J
-~

k—1 n—k
Ground state must be inhomogeneous!




The O(2n) vector model

For quantum description, write effective theory for
fluctuations around the ground state.

Expand Lagrangian around the ground state

(97"'797%797"'79)
k—1 n—k ) A
i ttidon /v f P2k—1 — P2K—1
U(1) sector: ox = o5 e#tow/ (” + ¢2k—1) - ;
( ) vz ok — Oor + 0,
U(k-1) sector: ¢ =, b = U7 @

Developing to second order in fields:

L® =3 (B=ip)e} (Ostin)pi + Y ¢igi— Y ViV
— ) 1P — 2Py,
1=1

Find inverse propagators and dispersion relations.



The O(2n) vector model

We expect dim[U(k)/U(k-1)] = 2k-1 Goldstone d.o.f.

Massless modes:

2 P4 p6 6
2 L, p4 —4 :
wy = =p° + + O(p™ ") one time

2w 322
There are \“conformal” Goldstone
* | relativistic Goldstone w x p
- k-1 non-relativistic Goldstones (count double) w  p?

Nielsen and Chadha; Murayama and Watanabe
142x% (k—1) =2k —1=dim(G/H)
Non-relativistic Goldstones have no zero-point energy
and do not contribute to the conformal dimensions.
Ground-state energy again determined by a single
relativistic Goldstone.



The O(2n) vector model

Same formula for anomalous dimensions as for O(2):

n-dependent universal for O(2n)

C3 /‘2/ \

D(Q) = 2\/—623/2 + 20T er2Q? = 0.094 + O(Q~1/?)
" L. Alvarez-Gaume, O. LoukalD. Orlando and S. R., arXiv:1610.04495 [hep-th]
Comparison with old lattice data: verified at large n for

D CP(n_ I ) model de la Fuente
3.0
25

: ° O(2)
2.0

: 0(3)
15" . 04)
1.0 o O(5)

05

Hasenbusch, Vicari

c3/2 decreases, ci/» increases with increasing n



The O(2n) vector model

New lattice data for O(4) model:
12

10 1

8 u
63/2 — 1068(4)
| C1/2 — 0083(3)

| | | | | | | | | |
o5 1 15 2 25 3 35 4 45 5
j D. Banerjee, Sh. Chandrasekharan, D. Orlando, S.R. 1902.09542

Again excellent agreement with large-Q prediction!



R(L/2)

The O(2n) vector model

Only total charge matters for homogeneous case:

Correlation function:

Co(r) ~ —4@) R(L/2)

|7]2D(Q)

Cq(r=1L/2)

S

N
000000
[sYsYsYsYs)e
WA
L mnn

— b —t —t )k

107* -

1 0‘3 //

0.01
1/L

CQ_l(T = L/Q)

R(L) ~ 1/L2(D(Q)—D(Q—1))

000000
000000
NN N

T T
abrON=O
QOO —-MNW

P e e e P s

107
0.01

1/L
D. Banerjee, Sh. Chandrasekharan, D. Orlando, S .R. unpublished

Parallel lines in log/log plot: conformal dimensions are the

same!



An example in 4d:
asymptotically safe CFT



An asymptotically safe CFT

Look for CFTs in 4D! Start with a QCD-inspired theory
with quarks, gluons and scalars: . f.vors of fermions

gauge group SV (N¢) Np X Nr matrix of cplx
1 /

/ scalars

_ Ll 5, . 5t
L 5 Tr(F*F,,) + Tr(QipQ) + yTr(QrHQr + QrH' Q1) Ourm = H1£10)Q

+ Tr(@MHTa“H) — uTr(HTH)2 —v(Tr H'H)? — %Tr(HTH)

Rescaled couplings

o :92NC N :Z/QNC o uNp Y vINZ
N N N Ok

Ny 11

Control parameter =N

In the limit Nr — 00, No — 0o With Nr/Ne fixed: asymptotically safe.

Litim, Sannino

Perturbatively controlled UV fixed point with
. 26 4 V23 —1

gzﬁe—i—... QZZE€+"‘ ay = 19 €+ ... apy; = —0.1373 e+ ...

84



An asymptotically safe CFT

Study this theory at large charge.

L= — % Te(F* F,,) + Tr(QiBQ) + y Tr(QLHQR + QrH' QL)

r(0,H'0"H) —uTr(H'H)" — o(Tr H'H)? — %Tr(HTH

Global symmetry: SU(Np);, x SU(Ng)r x U(1)5

New elements compared to vector model:

* His a matrix field, large non-Abelian global symmetry

* fermions and gluons are present

* 4D, different scalings

* UV fixed point, perturbatively controlled, trustable LSM

Large-charge expansion: focus on scalar sector



An asymptotically safe CFT

Noether currents:
J, =idHHT, Jp = —iHVdH
Corresponding charges:

Qr = /deJg, Op = /d?’xJ%
spec(Qr) = {Ji\ Jys ..., I, } spec(Qr) = {Ji%, Jas -y TN, )

Ansatz for homogeneous ground state: cartan subalgebra

B‘% self-adjoint
Ho(t) — eiMLt G—ZMRt

Impose charge conservation:
Qr = —iVe™t(—Mp[My, BB'| + [My, BMgB'])e "Mt =0,
Qr = iVe™Mr'(—Mp[Mg, B'B] + [Mg, BTM B])e "M=" = 0

M commutes or anti-
comm with B diagonal

= Hy = eZM!Be—"



An asymptotically safe CFT

We find: 9r = -2VMB>, Qr =2VB*M = —Qy,
Simple choice for charges:
N)
IETICR Ve, 10 (1] 0
B=D —

\0‘—1/ traceless SE Oy I\O‘—IL/

EOM on ansatz H, = ¢2MtpB: J =2Vb*p
2M2 — (U+UNF)b2 — 1—};

Assume ] large, expand in series:

2m2\'? o R [ VY
_ (4 /3, ~1/3 —5/3
H (v) 9 72(2712) 31+ 0(a77)

Natural expansion parameter:

N
7= ;;2 P)_ zjo‘h; T 2 ah]\j;% > 1
F F
. N2 -— huge \
Consistent for  Juw: > — | Jiot = JNE



An asymptotically safe CFT

Ground-state energy: not universal

/

1/3 2/3 2 4/3
E _3 N? 27\ !/ ga/3 | R (VY J2/3 _ L (R\* (M / 90 4+ 0(3—2/3>
20 +o, \ V 36 \ 272 144\ 6 272

- _1: . .3 N a3 Lo 1 g _2/3
Specialize to 3-sphere: = [3 + 28— "+ 0(d )]

210 X + Xy

Classical result. What about Goldstone contributions,
what about fermions, gluons!?

At large charge, the fermions receive large masses and
decouple: kinetic term

//Yu kawa term
1 /3 %,

s 1/2
my = (12 +y2b?) ) 31/3+O(3_1/3>

Below the fermion mass scale, also gluons decouple.
Gap:

Pd Xh + &y

3
Avm =y exp _220c9 My, )

~ O(e)
Low-energy physics described by Goldstones only!



An asymptotically safe CFT

Symmetry-breaking Pattil/B

SU(Np) x SU(Np) xU(1) — SU )XSU(NF/Z)XU() XSU(NF)

Spont

Expect dim(SU(Nr)) = Nz -1 Goldstone DoF

Do quadratic expansion of the Lagrangian around the
ground state, find dispersion relations.

W= 5—2 +. (Nr/2)” type || Goldstone modes
LL
W= \/% +. conformal Goldstone (type )

% ... Ni/2-2 type | Goldstones
3o, + 200,

W =

—

\causality constraint: 0 < ay/(3ap + 2a,) < 1
Constraint satisfied at fixed point.



An asymptotically safe CFT

Goldstones are organized in reps of the unbroken

adjoint
mmetry gr : :
Sy etry group: / __bifundamental
SUNE/2) < SUMNE/2) g g (07 4y ) ‘{
representation ’ 7 g
type I | | II
DOF 1 N2/4—1 N2/4—-1 2x N?/4
velocity 1/v3 \/ Son 250, \/ Sa o,  n/a

0.414 ...

Vacuum energy of the type | Goldstones:  ((—1/25%) = —
E —1<2>< (N—f%— ) =h +1>§(1/‘2/M)
T2 1 \/3ah +2a, /3 o

Conformal dimension (via state-operator corr.):

3 N? 1 1 3
A =1oB(S) = 5023 [‘74/3 A v AR ¢ 2/3)]

N2
((Z2E o LY o010,
9 3an 4+ 20, /3

D.Orlando, S.R., F. Sannino, arXiv:1905.00026
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Non-relativistic CFTs



Nonrelativistic CFTs

Motivation: unitary Fermi gas (3+1)D

Can be realized in the lab via cold atoms in a trap.
Tuning via Feshbach resonances: unitary point,

correlation length = 00, interaction length = 0

N
0.2 ' Condensation

T o
.1v0\:'&{’./' o .". e’
doimble %8
R v e f
Superfluid ¢ wdeo
Unitarity:
0 ] [0 e l
-2 -1 0 1
<«— BCS 1/(kga,) BEC—>
Attraction—>
At unitary point: described by a non-relativistic

superfluid
Effective action (small momentum expansion)

Son & Wingate



Nonrelativistic CFTs

Non-relativistic systems are not invariant under the full
conformal group.

Schrodinger algebra: contains the Galilean algebra with

central extension plus
/real parameters

scale transform.  (t,z;) = (t,2}) = (e*"t,e"x;)

t €X;
ial conf.trans (¢, z;) — (t',x)) = n
special conf. trans (¢,z;) — (¢, z}) <1+)\t 1+>\t)

The Schrodinger Lagrangian (in d space-dim) is invariant
under Schrodinger symmetry:

' h k a2 d+2
L) = 5 (670 — 90") — o - 0" Butp — 1T (") “F
\

scale



Nonrelativistic CFTs

System has again a global U(1) symmetry.
Follow the same recipe as for O(2): % =ae”
Homogeneous ground state:

0 — ut 1 g3 2E 2

P

d m

The leading piece of the effective action for O can be
found by dimensional analysis:

L£O) = ¢y BE=D/2d/277(d+2)/2

h
U = @té’ &ie 875‘9
2m

The first quantum correction to this (semi-classical)
result is the Casimir energy, it goes as Q'/¢



Nonrelativistic CFTs

Check for higher-derivative terms at tree level in the
effective action (here w/o curvature terms = flat space).

Use Schrodinger symmetry to constrain the terms that
can appear in the action (d=3):

Generic operator allowed by dimensional analysis and
compatible with scale and SC transformations:

04 x RB—1/2,,3/2=8 528 75/2—p
Invoke p-scaling to exclude highly suppressed termes:
U ~ U, 829 ~ ”_1/47 aZU ~ Iu_l/4

Term with highest p-scaling:
Op ™" RV 23RBS /2=B gng om0 ~ 2P n+m =28

For positive p-scaling, B<3.



Nonrelativistic CFTs

Check terms explicitly.

Result for d=2 and 3: 50

— 51

L(0) = coh' = 2md/2y (d+2)/2 /
4+ C1h2_d/2m_1+d/2U(d_4)/2 6ZU a@U/
+ 02h3_d/2m_2+d/2U<d_2)/2(av;az'e)Q T O(M_Q)

B=2

Check loop corrections to the effective action.

Both quantum corrections and tree-level higher
derivative terms are suppressed by inverse powers of |
for d>1.



Nonrelativistic CFTs

different from

2 i «— ..
2 _ 2N relativistic case!

Speed of sound (leading order): ¢; = o
NLO-correction to the dispersion relation:

A 2
W = CgP (1 —dZ— (2¢1 + des) £ + O(M_2)>
/ . g

again linear in p! from NLO tree-level terms

Quantum corrections enter at higher order.

Energy of ground state (on the torus): different from

o relativistic case!
h? 5 b d+ 2 b 1
_ (d+2)/d 1 = .1/d _9) 4 2 | -
Era = — V%\p S iy 5 P (ra(—2) A v2/d | | O<p2/d>
_ — -
| i

class. ground state energy ~Casimir energy

All other classical and quantum corrections are

suppressed by inverse powers of p.




Nonrelativistic CFTs

Large-Q expansion also works for non-relativistic CFTs.
Reproduce results of Son,Wingate (different approach)

Further directions:

* include curvature

* work in harmonic potential to use non-relativistic
state-operator correspondence e pa

* make connection to experimental results.






Summary

We studied various CFTs in sectors of large global charge

Concrete examples where a (strongly-coupled) CFT
simplifies in a special sector.

O(2N) model in 3d:in the limit of large U(Il) charge Q,

we computed the conformal dimensions in a
controlled perturbative expansion:

D(Q) = Qci;%@gm + 2/ e12Q"? — 0.094 + O(Q™/?)

Excellent agreement with lattice results for O(2),
O(4)

Can be applied beyond vector model: SU(N) matrix
models, SCFT




Summary

Asymptotically safe CFT in 4d (scalars, fermions and
gauge fields). Controllable UV fixed point.

fermions and gluons decouple

large-charge expansion for scalar sector

interesting Goldstone spectrum
Non-relativistic CFTs with global U(1).

Large-charge expansion exists, quantum
corrections and higher-derivative terms are

suppressed

results in 3+1D match eff. theory for unitary Fermi
gas

qualitatively different behavior to relativistic case



Summary

Some questions:
* Does it work?
- For all the examples, we tried, yes! Confirmation
from lattice data (O(2) and O(4))
* For what kinds of theories does it work!?
- (S)CFTs and non-relativistic CFTs
* In how many space-time dimensions!

d>| space dimensions
* For what kinds of global symmetries does it work?

- we checked U(l), O(2n) vector models, SU(N)
matrix models



Summary

* What happens if we fix several charges!?

- k charges with same chemical potential:
homogeneous solution with type | and type |l
Goldstones.

- different chemical potentials: inhomogeneous
solutions

* What can we learn via this approach?

- calculate CFT data at large charge!



Outlook

Further study of supersymmetric models at large R-
Charge (higher'dim. mOdUIi SPaCGS) Hellerman, Maeda, Orlando, Reffert, Watanabe

Connection to holography (gravity duals),, ... oo reffer sk
Connection to large-spin results,, ...

Understanding dualities semi-classically at large charge
Use/check large-charge results in conformal bootstrap

Comparison with large-N expansion

Further lattice simulations: inhomogeneous sector,
general O(N)

strongly coupled CFTs in 4d at IR fixed point
Fishnet CFTs (non-unitary)

Study fermionic theories. Can large-charge approach
be used for QCD (e.g. large baryon number)!?



Thank you for your
attention!



