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Part I. Stochastic areas



The Lévy area formula

Let Zt = Xt + iYt , t ≥ 0, be a Brownian motion in the complex
plane such that Z0 = 0. Up to a factor 1/2, the algebraic area
swept out by the path of Z up to time t is given by

St =

∫
Z [0,t]

xdy − yx =

∫ t

0
XsdYs − YsdXs ,



The Lévy area formula

The Lévy’s area formula

E
(
e iλSt |Zt = z

)
=

λt

sinhλt
e−

|z|2
2t (λt cothλt−1)

was originally proved by Paul Lévy (1940) by using a series
expansion of Z .

The formula has numerous applications: Rough paths theory,
Connections with the Riemann zeta function, Heat kernel on the
Heisenberg group,...
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The Lévy area formula

The formula nowadays admits many different proofs. A particularly
elegant probabilistic approach is due to Marc Yor.

The first observation is that, due to the invariance by rotations of
Z , one has for every λ ∈ R,

E
(
e iλSt |Zt = z

)
= E

(
e−

λ2
2

∫ t
0 |Zs |2ds

∣∣∣∣ |Zt | = |z |
)
.
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The Lévy area formula

One considers then the new probability

Pλ/Ft
= exp

(
λ

2
(|Zt |2 − 2t)− λ2

2

∫ t

0
|Zs |2ds

)
P/Ft

under which, thanks to Girsanov theorem, (Zt)t≥0 is a Gaussian
process (an Ornstein-Uhlenbeck process). The Lévy area formula
then easily follows from standard computations on Gaussian
measures.



The complex projective space CPn

The complex projective space CPn can be defined as the set of
complex lines in Cn+1. To parametrize points in CPn, it is
convenient to use the local inhomogeneous coordinates given by
wj = zj/zn+1, 1 ≤ j ≤ n, z ∈ Cn+1, zn+1 6= 0.

The map

π : S2n+1 → CPn

(z1, · · · , zn+1) → (w1, · · · ,wn)

is a Riemannian submersion with totally geodesic fibers isometric to
U(1).
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Brownian motion in CPn

By using the submersion π, one can construct the Browian motion
on CPn as

w(t) = (w1(t), · · · ,wn(t)) =

(
Z 1(t)

Zn+1(t)
, · · · , Zn(t)

Zn+1(t)

)
where (Z 1(t), · · · ,Zn+1(t)) is a Brownian motion on S2n+1.



Stochastic area in CPn

Let (w(t))t≥0 be a Brownian motion on CPn started at 01. The
generalized stochastic area process of (w(t))t≥0 is defined by

θ(t) =

∫
w [0,t]

α =
i

2

n∑
j=1

∫ t

0

wj(s)dwj(s)− wj(s)dwj(s)

1+ |w(s)|2
,

where the above stochastic integrals are understood in the
Stratonovitch, or equivalently in the Itô sense.

The form dα is the
Kähler form on CPn.

1We call 0 the point with inhomogeneous coordinates w1 = 0, · · · ,wn = 0
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Skew-product decomposition

Theorem
Let (w(t))t≥0 be a Brownian motion on CPn started at 0 and
(θ(t))t≥0 be its stochastic area process. The S2n+1-valued diffusion
process

Xt =
e−iθ(t)√
1+ |w(t)|2

(w(t), 1) , t ≥ 0

is the horizontal lift at the north pole of (w(t))t≥0 by the
submersion π.



Skew-product decomposition

Corollary

Let r(t) = arctan |w(t)|. The process (r(t), θ(t))t≥0 is a diffusion
with generator

L =
1
2

(
∂2

∂r2 + ((2n − 1) cot r − tan r)
∂

∂r
+ tan2 r

∂2

∂θ2

)
.

As a consequence the following equality in distribution holds

(r(t), θ(t))t≥0 =
(
r(t),B∫ t

0 tan2 r(s)ds

)
t≥0

,

where (Bt)t≥0 is a standard Brownian motion independent from r .
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Consider the Jacobi generator

Lα,β =
1
2
∂2

∂r2+

((
α+

1
2

)
cot r −

(
β +

1
2

)
tan r

)
∂

∂r
, α, β > −1

We denote by qα,βt (r0, r) the transition density with respect to the
Lebesgue measure of the diffusion with generator Lα,β .

Theorem
For λ ≥ 0, r ∈ [0, π/2), and t > 0 we have

E
(
e iλθ(t) | r(t) = r

)
= E

(
e−

λ2
2

∫ t
0 tan2 r(s)ds | r(t) = r

)
=

e−nλt

(cos r)λ
qn−1,λ
t (0, r)

qn−1,0
t (0, r)

.



Limit distribution

Theorem
When t → +∞, the following convergence in distribution takes
place

θ(t)

t
→ Cn,

where Cn is a Cauchy distribution with parameter n.



The complex hyperbolic space

The complex hyperbolic space CHn is the open unit ball in Cn.

Let

H2n+1 = {z ∈ Cn+1, |z1|2 + · · ·+ |zn|2 − |zn+1|2 = −1}

be the 2n + 1 dimensional anti-de Sitter space. The map

π : H2n+1 → CHn

(z1, · · · , zn+1) →
(

z1
zn+1

, · · · , zn
zn+1

)
is an indefinite Riemannian submersion whose one-dimensional
fibers are definite negative.
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Stochastic area in CHn
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k=1 |zk |2 − |zn+1|2 < 0}.
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Skew product decomposition

Theorem
Let (w(t))t≥0 be a Brownian motion on CHn started at 0 and
(θ(t))t≥0 be its stochastic area process. The H2n+1-valued
diffusion process

Yt =
e iθt√

1− |w(t)|2
(w(t), 1) , t ≥ 0

is the horizontal lift at (0, 1) of (w(t))t≥0 by the submersion π.



Skew-product decomposition

Theorem
Let r(t) = tanh−1 |w(t)|. The process (r(t), θ(t))t≥0 is a diffusion
with generator

L =
1
2

(
∂2

∂r2 + ((2n − 1) coth r + tanh r)
∂

∂r
+ tanh2 r

∂2

∂θ2

)
.

As a consequence the following equality in distribution holds

(r(t), θ(t))t≥0 =
(
r(t),B∫ t

0 tanh2 r(s)ds

)
t≥0

, (1)

where (Bt)t≥0 is a standard Brownian motion independent from r .



Limit law

Theorem
When t → +∞, the following convergence in distribution takes
place

θ(t)√
t
→ N (0, 1)

where N (0, 1) is a normal distribution with mean 0 and variance 1.



Part II. Stochastic windings



Winding form

In the punctured complex plane C \ {0}, consider the one-form

α =
xdy − ydx

x2 + y2 .

For every smooth path γ : [0,+∞)→ C \ {0} one has the
representation

γ(t) = |γ(t)| exp

(
i

∫
γ[0,t]

α

)
, t ≥ 0.

It is therefore natural to call α the winding form around 0 since the
integral of a smooth path γ along this form quantifies the angular
motion of this path.
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Asymptotic Brownian Winding

The integral of the winding form along the paths of a
two-dimensional Brownian motion Z (t) = X (t) + iY (t) which is
not started from 0 can be defined using Itô’s calculus and yields the
Brownian winding functional:

ζ(t) =

∫
Z [0,t]

α =

∫ t

0

X (s)dY (s)− Y (s)dX (s)

X (s)2 + Y (s)2
.

Theorem (Spitzer, 1958)

When t → +∞, in distribution

2
ln t

ζ(t)→ C1

where C1 is a Cauchy distribution with parameter 1.



Asymptotic Brownian Winding

The integral of the winding form along the paths of a
two-dimensional Brownian motion Z (t) = X (t) + iY (t) which is
not started from 0 can be defined using Itô’s calculus and yields the
Brownian winding functional:

ζ(t) =

∫
Z [0,t]

α =

∫ t

0

X (s)dY (s)− Y (s)dX (s)

X (s)2 + Y (s)2
.

Theorem (Spitzer, 1958)

When t → +∞, in distribution

2
ln t

ζ(t)→ C1

where C1 is a Cauchy distribution with parameter 1.



Winding on CP1

One has a winding form on CP1 ' C ∪ {∞}. Therefore, if W (t) is
a Brownian motion on CP1 one can consider the winding process

ζ(t) =

∫
W [0,t]

α

Theorem (McKean, 1960’s)

When t → +∞, in distribution

1
t
ζ(t)→ C2

where C2 is a Cauchy distribution with parameter 2.



Winding on CH1

One also has a winding form on CH1 ' BR2(0, 1). Therefore, if
W (t) is a Brownian motion on CH1 on can consider the winding
process

ζ(t) =

∫
W [0,t]

α

Theorem
When t → +∞, in distribution

ζ(t)→ Cln coth ‖W0‖

where Cln coth ‖W0‖ is a Cauchy distribution with parameter
ln coth ‖W0‖.


