Stochastic areas and windings

Fabrice Baudoin (Joint with J. Wang)

ICTP, Trieste

September 17, 2019

Part I. Stochastic areas

Let $Z_{t}=X_{t}+i Y_{t}, t \geq 0$, be a Brownian motion in the complex plane such that $Z_{0}=0$. Up to a factor $1 / 2$, the algebraic area swept out by the path of Z up to time t is given by

$$
S_{t}=\int_{Z[0, t]} x d y-y x=\int_{0}^{t} X_{s} d Y_{s}-Y_{s} d X_{s}
$$

The Lévy's area formula

$$
\mathbb{E}\left(e^{i \lambda S_{t}} \mid Z_{t}=z\right)=\frac{\lambda t}{\sinh \lambda t} e^{-\frac{|z|^{2}}{2 t}(\lambda t \operatorname{coth} \lambda t-1)}
$$

was originally proved by Paul Lévy (1940) by using a series expansion of Z.

The Lévy's area formula

$$
\mathbb{E}\left(e^{i \lambda S_{t}} \mid Z_{t}=z\right)=\frac{\lambda t}{\sinh \lambda t} e^{-\frac{|z|^{2}}{2 t}(\lambda t \operatorname{coth} \lambda t-1)}
$$

was originally proved by Paul Lévy (1940) by using a series expansion of Z.

The formula has numerous applications: Rough paths theory, Connections with the Riemann zeta function, Heat kernel on the Heisenberg group,...

The formula nowadays admits many different proofs. A particularly elegant probabilistic approach is due to Marc Yor.

The formula nowadays admits many different proofs. A particularly elegant probabilistic approach is due to Marc Yor. The first observation is that, due to the invariance by rotations of Z, one has for every $\lambda \in \mathbb{R}$,

$$
\mathbb{E}\left(e^{i \lambda S_{t}} \mid Z_{t}=z\right)=\mathbb{E}\left(e^{-\frac{\lambda^{2}}{2} \int_{0}^{t}\left|Z_{s}\right|^{2} d s}| | Z_{t}|=|z|)\right.
$$

The Lévy area formula

One considers then the new probability

$$
\mathbb{P}_{/ \mathcal{F}_{t}}^{\lambda}=\exp \left(\frac{\lambda}{2}\left(\left|Z_{t}\right|^{2}-2 t\right)-\frac{\lambda^{2}}{2} \int_{0}^{t}\left|Z_{s}\right|^{2} d s\right) \mathbb{P}_{/ \mathcal{F}_{t}}
$$

under which, thanks to Girsanov theorem, $\left(Z_{t}\right)_{t \geq 0}$ is a Gaussian process (an Ornstein-Uhlenbeck process). The Lévy area formula then easily follows from standard computations on Gaussian measures.

The complex projective space $\mathbb{C P}^{p}$

The complex projective space $\mathbb{C P}^{n}$ can be defined as the set of complex lines in \mathbb{C}^{n+1}. To parametrize points in $\mathbb{C P}^{n}$, it is convenient to use the local inhomogeneous coordinates given by $w_{j}=z_{j} / z_{n+1}, 1 \leq j \leq n, z \in \mathbb{C}^{n+1}, z_{n+1} \neq 0$.

The complex projective space $\mathbb{C P}^{p}$

The complex projective space $\mathbb{C P}^{n}$ can be defined as the set of complex lines in \mathbb{C}^{n+1}. To parametrize points in $\mathbb{C} \mathbb{P}^{n}$, it is convenient to use the local inhomogeneous coordinates given by $w_{j}=z_{j} / z_{n+1}, 1 \leq j \leq n, z \in \mathbb{C}^{n+1}, z_{n+1} \neq 0$.

The map

$$
\begin{aligned}
\pi: & \mathbb{S}^{2 n+1} & \rightarrow \mathbb{C P}^{n} \\
& \left(z_{1}, \cdots, z_{n+1}\right) & \rightarrow\left(w_{1}, \cdots, w_{n}\right)
\end{aligned}
$$

is a Riemannian submersion with totally geodesic fibers isometric to $\mathbf{U}(1)$.

Brownian motion in $\mathbb{C P}^{n}$

By using the submersion π, one can construct the Browian motion on $\mathbb{C P}^{n}$ as

$$
w(t)=\left(w^{1}(t), \cdots, w^{n}(t)\right)=\left(\frac{Z^{1}(t)}{Z^{n+1}(t)}, \cdots, \frac{Z^{n}(t)}{Z^{n+1}(t)}\right)
$$

where $\left(Z^{1}(t), \cdots, Z^{n+1}(t)\right)$ is a Brownian motion on $\mathbb{S}^{2 n+1}$.

Stochastic area in $\mathbb{C P}^{n}$

Let $(w(t))_{t \geq 0}$ be a Brownian motion on $\mathbb{C P}^{n}$ started at 0^{1}. The generalized stochastic area process of $(w(t))_{t \geq 0}$ is defined by

$$
\theta(t)=\int_{w[0, t]} \alpha=\frac{i}{2} \sum_{j=1}^{n} \int_{0}^{t} \frac{w_{j}(s) d \overline{w_{j}}(s)-\overline{w_{j}}(s) d w_{j}(s)}{1+|w(s)|^{2}}
$$

where the above stochastic integrals are understood in the Stratonovitch, or equivalently in the Itô sense.
${ }^{1}$ We call 0 the point with inhomogeneous coordinates $w_{1}=0, \cdots, w_{n}=0$

Stochastic area in $\mathbb{C P}^{n}$

Let $(w(t))_{t \geq 0}$ be a Brownian motion on $\mathbb{C P}^{n}$ started at 0^{1}. The generalized stochastic area process of $(w(t))_{t \geq 0}$ is defined by

$$
\theta(t)=\int_{w[0, t]} \alpha=\frac{i}{2} \sum_{j=1}^{n} \int_{0}^{t} \frac{w_{j}(s) d \overline{w_{j}}(s)-\overline{w_{j}}(s) d w_{j}(s)}{1+|w(s)|^{2}}
$$

where the above stochastic integrals are understood in the Stratonovitch, or equivalently in the Itô sense. The form $d \alpha$ is the Kähler form on $\mathbb{C P}^{n}$.
${ }^{1}$ We call 0 the point with inhomogeneous coordinates $w_{1}=0, \cdots, w_{n}=0$

Skew-product decomposition

Theorem

Let $(w(t))_{t \geq 0}$ be a Brownian motion on $\mathbb{C P}^{n}$ started at 0 and $(\theta(t))_{t \geq 0}$ be its stochastic area process. The $\mathbb{S}^{2 n+1}$-valued diffusion process

$$
X_{t}=\frac{e^{-i \theta(t)}}{\sqrt{1+|w(t)|^{2}}}(w(t), 1), \quad t \geq 0
$$

is the horizontal lift at the north pole of $(w(t))_{t \geq 0}$ by the submersion π.

Skew-product decomposition

Corollary

Let $r(t)=\arctan |w(t)|$. The process $(r(t), \theta(t))_{t \geq 0}$ is a diffusion with generator

$$
L=\frac{1}{2}\left(\frac{\partial^{2}}{\partial r^{2}}+((2 n-1) \cot r-\tan r) \frac{\partial}{\partial r}+\tan ^{2} r \frac{\partial^{2}}{\partial \theta^{2}}\right) .
$$

Skew-product decomposition

Corollary

Let $r(t)=\arctan |w(t)|$. The process $(r(t), \theta(t))_{t \geq 0}$ is a diffusion with generator

$$
L=\frac{1}{2}\left(\frac{\partial^{2}}{\partial r^{2}}+((2 n-1) \cot r-\tan r) \frac{\partial}{\partial r}+\tan ^{2} r \frac{\partial^{2}}{\partial \theta^{2}}\right) .
$$

As a consequence the following equality in distribution holds

$$
(r(t), \theta(t))_{t \geq 0}=\left(r(t), B_{\int_{0}^{t} \tan ^{2} r(s) d s}\right)_{t \geq 0}
$$

where $\left(B_{t}\right)_{t \geq 0}$ is a standard Brownian motion independent from r.

Consider the Jacobi generator
$\mathcal{L}^{\alpha, \beta}=\frac{1}{2} \frac{\partial^{2}}{\partial r^{2}}+\left(\left(\alpha+\frac{1}{2}\right) \cot r-\left(\beta+\frac{1}{2}\right) \tan r\right) \frac{\partial}{\partial r}, \quad \alpha, \beta>-1$
We denote by $q_{t}^{\alpha, \beta}\left(r_{0}, r\right)$ the transition density with respect to the Lebesgue measure of the diffusion with generator $\mathcal{L}^{\alpha, \beta}$.

Theorem

For $\lambda \geq 0, r \in[0, \pi / 2)$, and $t>0$ we have

$$
\begin{aligned}
\mathbb{E}\left(e^{i \lambda \theta(t)} \mid r(t)=r\right) & =\mathbb{E}\left(\left.e^{-\frac{\lambda^{2}}{2} \int_{0}^{t} \tan ^{2} r(s) d s} \right\rvert\, r(t)=r\right) \\
& =\frac{e^{-n \lambda t}}{(\cos r)^{\lambda}} \frac{q_{t}^{n-1, \lambda}(0, r)}{q_{t}^{n-1,0}(0, r)}
\end{aligned}
$$

Limit distribution

Theorem

When $t \rightarrow+\infty$, the following convergence in distribution takes place

$$
\frac{\theta(t)}{t} \rightarrow \mathcal{C}_{n},
$$

where \mathcal{C}_{n} is a Cauchy distribution with parameter n.

The complex hyperbolic space

The complex hyperbolic space $\mathbb{C} \mathbb{H}^{n}$ is the open unit ball in \mathbb{C}^{n}.

The complex hyperbolic space

The complex hyperbolic space $\mathbb{C} \mathbb{H}^{n}$ is the open unit ball in \mathbb{C}^{n}. Let

$$
\mathbb{H}^{2 n+1}=\left\{z \in \mathbb{C}^{n+1},\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}-\left|z_{n+1}\right|^{2}=-1\right\}
$$

be the $2 n+1$ dimensional anti-de Sitter space.

The complex hyperbolic space

The complex hyperbolic space $\mathbb{C} \mathbb{H}^{n}$ is the open unit ball in \mathbb{C}^{n}. Let

$$
\mathbb{H}^{2 n+1}=\left\{z \in \mathbb{C}^{n+1},\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}-\left|z_{n+1}\right|^{2}=-1\right\}
$$

be the $2 n+1$ dimensional anti-de Sitter space. The map

$$
\begin{array}{rll}
\pi: & \mathbb{H}^{2 n+1} & \rightarrow \mathbb{C}_{\mathbb{H}^{n}} \\
& \left(z_{1}, \cdots, z_{n+1}\right) & \rightarrow\left(\frac{z_{1}}{z_{n+1}}, \cdots, \frac{z_{n}}{z_{n+1}}\right)
\end{array}
$$

is an indefinite Riemannian submersion whose one-dimensional fibers are definite negative.

Stochastic area in $\mathbb{C} \mathbb{H}^{n}$

To parametrize $\mathbb{C} \mathbb{H}^{n}$, we will use the global inhomogeneous coordinates given by $w_{j}=z_{j} / z_{n+1}$ where $\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{M}$ with $\mathbb{M}=\left\{z \in \mathbb{C}^{n, 1}, \sum_{k=1}^{n}\left|z_{k}\right|^{2}-\left|z_{n+1}\right|^{2}<0\right\}$.

Definition

Let $(w(t))_{t \geq 0}$ be a Brownian motion on $\mathbb{C H}^{n}$ started at 0^{2}. The generalized stochastic area process of $(w(t))_{t \geq 0}$ is defined by

$$
\theta(t)=\int_{w[0, t]} \alpha=\frac{i}{2} \sum_{j=1}^{n} \int_{0}^{t} \frac{w_{j}(s) d \overline{w_{j}}(s)-\overline{w_{j}}(s) d w_{j}(s)}{1-|w(s)|^{2}},
$$

where the above stochastic integrals are understood in the Stratonovitch sense or equivalently Itô sense.

[^0]
Skew product decomposition

Theorem

Let $(w(t))_{t \geq 0}$ be a Brownian motion on $\mathbb{C H}^{n}$ started at 0 and $(\theta(t))_{t \geq 0}$ be its stochastic area process. The $\mathbb{H}^{2 n+1}$-valued diffusion process

$$
Y_{t}=\frac{e^{i \theta_{t}}}{\sqrt{1-|w(t)|^{2}}}(w(t), 1), \quad t \geq 0
$$

is the horizontal lift at $(0,1)$ of $(w(t))_{t \geq 0}$ by the submersion π.

Skew-product decomposition

Theorem

Let $r(t)=\tanh ^{-1}|w(t)|$. The process $(r(t), \theta(t))_{t \geq 0}$ is a diffusion with generator

$$
L=\frac{1}{2}\left(\frac{\partial^{2}}{\partial r^{2}}+((2 n-1) \operatorname{coth} r+\tanh r) \frac{\partial}{\partial r}+\tanh ^{2} r \frac{\partial^{2}}{\partial \theta^{2}}\right)
$$

As a consequence the following equality in distribution holds

$$
\begin{equation*}
(r(t), \theta(t))_{t \geq 0}=\left(r(t), B_{\int_{0}^{t} \tanh ^{2} r(s) d s}\right)_{t \geq 0} \tag{1}
\end{equation*}
$$

where $\left(B_{t}\right)_{t \geq 0}$ is a standard Brownian motion independent from r.

Limit law

Theorem

When $t \rightarrow+\infty$, the following convergence in distribution takes place

$$
\frac{\theta(t)}{\sqrt{t}} \rightarrow \mathcal{N}(0,1)
$$

where $\mathcal{N}(0,1)$ is a normal distribution with mean 0 and variance 1 .

Part II. Stochastic windings

Winding form

In the punctured complex plane $\mathbb{C} \backslash\{0\}$, consider the one-form

$$
\alpha=\frac{x d y-y d x}{x^{2}+y^{2}}
$$

Winding form

In the punctured complex plane $\mathbb{C} \backslash\{0\}$, consider the one-form

$$
\alpha=\frac{x d y-y d x}{x^{2}+y^{2}}
$$

For every smooth path $\gamma:[0,+\infty) \rightarrow \mathbb{C} \backslash\{0\}$ one has the representation

$$
\gamma(t)=|\gamma(t)| \exp \left(i \int_{\gamma[0, t]} \alpha\right), \quad t \geq 0
$$

Winding form

In the punctured complex plane $\mathbb{C} \backslash\{0\}$, consider the one-form

$$
\alpha=\frac{x d y-y d x}{x^{2}+y^{2}}
$$

For every smooth path $\gamma:[0,+\infty) \rightarrow \mathbb{C} \backslash\{0\}$ one has the representation

$$
\gamma(t)=|\gamma(t)| \exp \left(i \int_{\gamma[0, t]} \alpha\right), \quad t \geq 0
$$

It is therefore natural to call α the winding form around 0 since the integral of a smooth path γ along this form quantifies the angular motion of this path.

Asymptotic Brownian Winding

The integral of the winding form along the paths of a two-dimensional Brownian motion $Z(t)=X(t)+i Y(t)$ which is not started from 0 can be defined using Itô's calculus and yields the Brownian winding functional:

$$
\zeta(t)=\int_{Z[0, t]} \alpha=\int_{0}^{t} \frac{X(s) d Y(s)-Y(s) d X(s)}{X(s)^{2}+Y(s)^{2}}
$$

Asymptotic Brownian Winding

The integral of the winding form along the paths of a two-dimensional Brownian motion $Z(t)=X(t)+i Y(t)$ which is not started from 0 can be defined using Itô's calculus and yields the Brownian winding functional:

$$
\zeta(t)=\int_{Z[0, t]} \alpha=\int_{0}^{t} \frac{X(s) d Y(s)-Y(s) d X(s)}{X(s)^{2}+Y(s)^{2}}
$$

Theorem (Spitzer, 1958)

When $t \rightarrow+\infty$, in distribution

$$
\frac{2}{\ln t} \zeta(t) \rightarrow C_{1}
$$

where C_{1} is a Cauchy distribution with parameter 1.

Winding on $\mathbb{C P}^{1}$

One has a winding form on $\mathbb{C P}^{1} \simeq \mathbb{C} \cup\{\infty\}$. Therefore, if $W(t)$ is a Brownian motion on $\mathbb{C P}^{1}$ one can consider the winding process

$$
\zeta(t)=\int_{W[0, t]} \alpha
$$

Theorem (McKean, 1960's)

When $t \rightarrow+\infty$, in distribution

$$
\frac{1}{t} \zeta(t) \rightarrow C_{2}
$$

where C_{2} is a Cauchy distribution with parameter 2.

Winding on $\mathbb{C H}^{1}$

One also has a winding form on $\mathbb{C H} \mathbb{H}^{1} \simeq B_{\mathbb{R}^{2}}(0,1)$. Therefore, if $W(t)$ is a Brownian motion on $\mathbb{C H} \mathbb{H}^{1}$ on can consider the winding process

$$
\zeta(t)=\int_{W[0, t]} \alpha
$$

Theorem

When $t \rightarrow+\infty$, in distribution

$$
\zeta(t) \rightarrow C_{\operatorname{In} \operatorname{coth}\left\|W_{0}\right\|}
$$

where $C_{\text {In coth }\left\|W_{0}\right\|}$ is a Cauchy distribution with parameter In coth $\left\|W_{0}\right\|$.

[^0]: ${ }^{2}$ We call 0 the point with inhomogeneous coordinates $w_{1}=0, \cdots, w_{n}=0$

