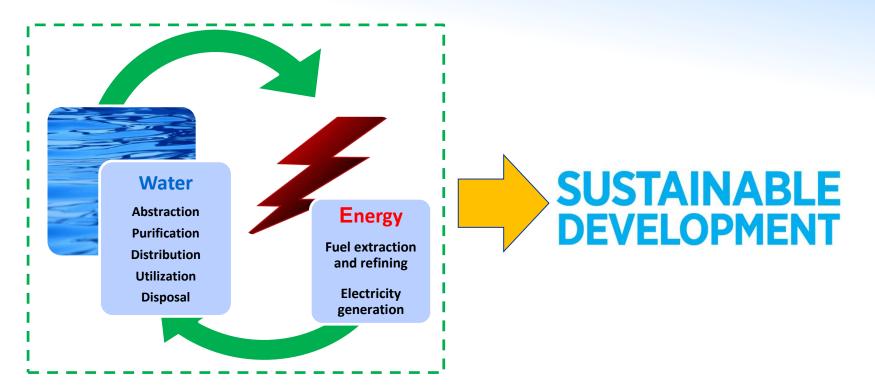


Nuclear Desalination

Dr. Ibrahim Khamis

Senior Nuclear Engineer Project Manager, Non-Electric Applications Department of Nuclear Energy International Atomic Energy Agency



Contents

Introduction & Status Economics Safety Aspects Environmental Impact Questions & Discussion!

Success Story on Nuclear Desalination:

Synergies in Nuclear desalination are a catalyst for sustainable development

Introduction & Status


IAEA-TECDOC-1326

Status of design concepts of nuclear desalination plants

INTERNATIONA

IAEA-TECDOC-1524

Status of Nuclear Desalination in IAEA Member States

Nuclear Desalination

What is it?

Any co-located desalination plant that is powered with nuclear energy

Why?

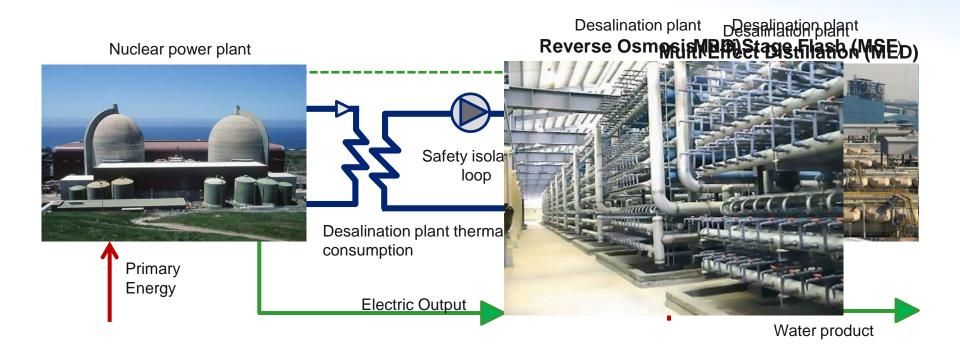
Viable option to meet:

- Increasing global demand for water & energy
- Concerns about climate change
- Volatile fossil fuel prices
- Security of energy supply $\longrightarrow 1+1=2$

How?

- Cogeneration concept
- Extra safety barriers

 $1\frac{1}{2}$


Nuclear Desalination

- Nuclear desalination is defined to be the production of potable water from seawater in a facility in which a nuclear reactor is used as the source of energy (electrical and/or thermal) for the desalination process.
- All of the technologies currently in use for desalination require significant amounts of energy, either as low-temperature process heat or electricity.
- Nuclear power plants can provide residual heat, low temperature steam and electricity.

Nuclear Desalination Technology Sea water desalination with nuclear power

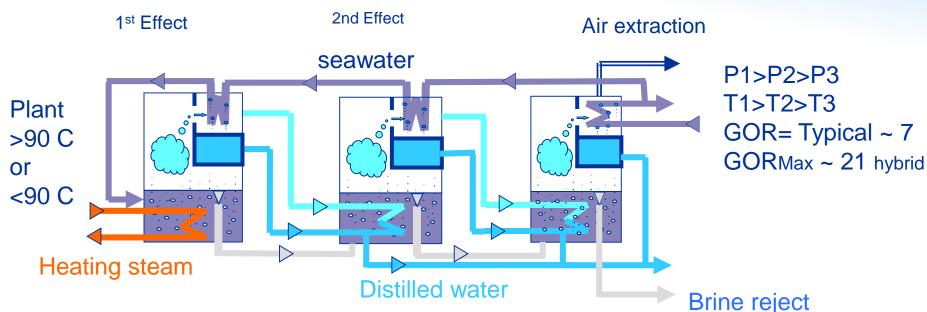
The coupling of two different technologies in a way that ensures the safe operation and the economic excellence of the overall plant → Complex plant engineering and design

Main Parameters in Desalination Processes

- **Capacity** \rightarrow Production of water (usually in m³/d)
- Quality → Water quality expressed by amount of total dissolved solids (TDS) in the product (in ppm)

Specific for thermal

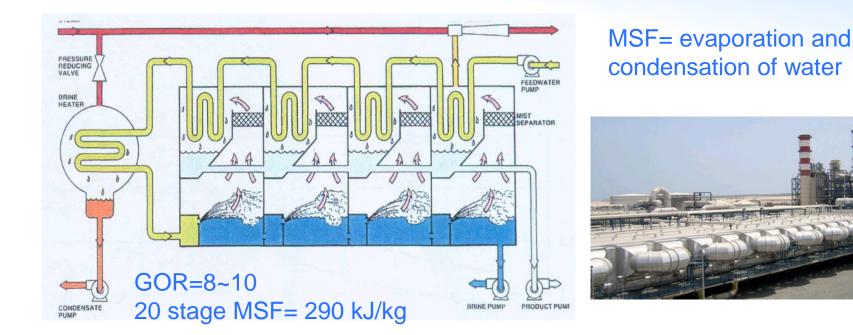
- Gain Output Ratio GOR → The ratio of the mass of water product per mass of steam needed. It is used as a measure of efficiency (the bigger the better)
- Top Brine Temperature → The maximum temperature of the brine in the first stage/effect. Defines the quality of heat needed and affects GOR.


Specific for membrane

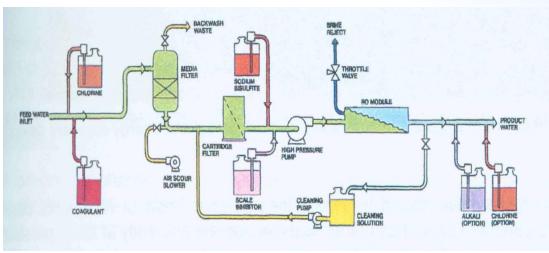
 Pressure → The feedwater pressure used to pump the feedwater through the membrane. Usually related with the membrane type and mechanical properties.

Main Desalination Technologies Multiple Effect Distillation (MED) Plant

3rd Effect



In the MED process, vapor produced by an external heating steam source is multiplied by placing several evaporators (effects) in series under successively lower pressures, and using the vapor produced in each effect as a heat source for the next one.


Main Desalination Technologies Multi-Stage Flash (MSF) Distillation Plant

In the MSF process, vapor is produced by heating the seawater close to its boiling temperature and passing it to a series of stages under successively decreasing pressures to induce flashing. The vapor produced is then condensed and cooled as distillate in the seawater tubes of the following stage.

Main Desalination Technologies Reverse Osmosis (RO)

- Seawater is forced to pass under pressure through special semi-permeable membranes: pure water is produced & brine is rejected.
- The differential pressure must be high enough to overcome the natural tendency of water to move from the low salt concentration side to the high concentration side, as defined by osmotic pressure.
- Operating pressure: 54 to 80 bar for seawater systems (Osmotic pressure ~ 25 bar for seawater)
- The water recovery rate of RO systems tends to be low ~ 40%

Main Desalination Technologies

	Advantages	Weaknesses
MSF	 Simplicity, reliability, long track record Minimum pretreatment Large unit sizes On-line cleaning 	 High energy requirements Not appropriate for single purpose plants
MED	 Minimum pretreatment Low TDS product water Less electrical energy than MSF Lower capital cost than MSF 	Complex to operateSmall unit sizes
RO	 Less energy needed than thermal Less feed water needed Lower capital costs 	 Extremely dependent on effectiveness of pretreatment More complex to operate than thermal Low product purity Boron issues to be addressed

Coupling Nuclear Reactors with Desalination

Existing and planned nuclear power stations could be used to produce fresh water using the surplus of

Waste heat

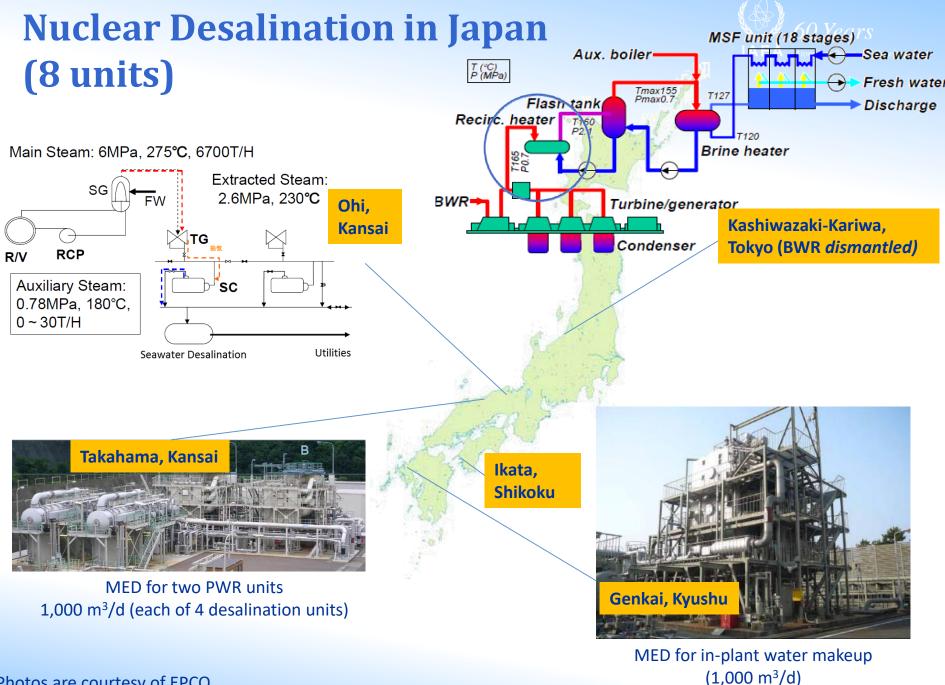
- MED desalination plants
 - GT-MHR, through a flash tank using intercoolers reject heat
 - HRT, using steam extractions
 - PWR, using low pressure steam extraction
 - AP1000, using condenser reject heat
 - FPU, using condenser reject heat
- MSF desalination plants
 - BWR, through a flash tank using turbine steam extractions

Electricity

- RO desalination plants
 - Any plant (e.g., CANDU-6)

Hybrid (combination of heat and electricity)

PHWR: steam extraction to MSF and electricity to RO


Experience on Nuclear Desalination

Plant name	Location	Gross power [MW(e)]	Water capacity [m ³ /d]	Reactor type/ Desal. process
Shevchenko	Aktau, Kazakhstan	150	80000 - 145000	FBR/MSF&MED
Ikata-1,2	Ehime, Japan	566	2000	LWR/MSF
Ikata-3	Ehime, Japan	890	2000	LWR/RO
Ohi-1,2	Fukui, Japan	2 x 1175	3900	LWR/MSF
Ohi-3,4	Fukui, Japan	1 x 1180	2600	LWR/RO
Genkai-4	Fukuoka, Japan	1180	1000	LWR/RO
Genkai-3,4	Fukuoka, Japan	2 x 1180	1000	LWR/MED
Takahama-3,4	Fukui, Japan	2 x 870	1000	LWR/RO
Diablo Canyon	San Luis Obispo, USA	2 x 1100	2180	LWR/RO
NDDP	Kalpakkam, India	2 x 170	1800 2010	PHWR/RO
Karachi	Karachi, Pakistan	2 x 170 Commission	ed in 201	MED

Types of Nuclear Power Plants & Desalination Technologies used for Nuclear Desalination

Reactor type	Country	Desalination process	Status
LMFR	Kazakhstan	MED, MSF	Decommissioned (1999)
	Japan	MED, MSF, RO	Operating > 150 reactor-years
PWRs	Korea, Argentina	MED, RO	Design stage
	Russia	MED, RO	Design stage
	India	MSF, RO	Operating since (2002+2010)
PHWR	Canada	RO	Design stage
	Pakistan	MED	Operating since (2010)
BWR	Japan	MSF	Installed
HTGR	South Africa	MED, MSF, RO	Design stage
NHR	China	MED	Design stage

Photos are courtesy of EPCO

Nuclear Desalination in Pakistan

60 Years

1600 m³/day MED Nuclear Desalination Demonstration Plant coupled with KANUPP(137MWe CANDU Reactor) commissioned in December, 2009.

First Phase:

- MED : one-third capacity, first battery (1600 m³/day)
- ICL & Sea water intake circuits: Full capacity

Second Phase:

- Second battery of MED plant (1600 m³/day) to be added(Locally designed and manufactured)

Nuclear Desalination in India

NDDP: 6.3 MLD Sea water Desalination Plant at MAPS, Kalpakkam (Hybrid System)

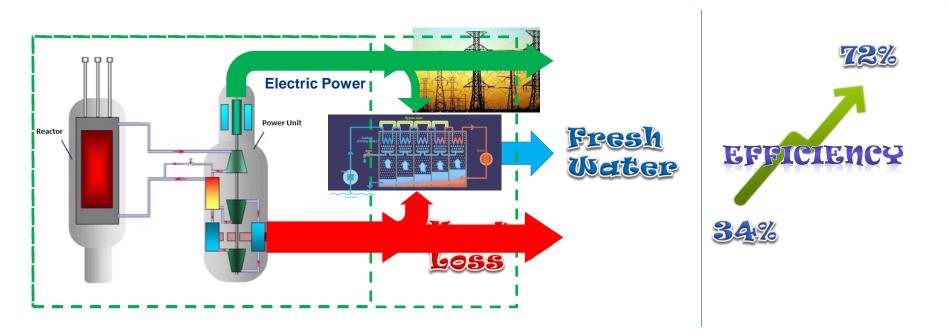
- Reverse Osmosis (RO): Commissioned in 2003
- Capacity (MLD): 1.8
- Product water quality (ppm): 500
- Multi-Stage Flash (MSF):Commissioned in 2008-9
- Capacity (MLD): 4.5
- Product water quality (ppm): 10
- Desalination plants coupled to a nuclear power plant(NPP).
- One part follows RO with electricity from NPP.
- Other part follows MSF distillation uses low grade heat from NPP.
- Two qualities of water are available which is blended for human or industrial consumption.

Presence of Radioactive Contaminants in product water: Nil

Economics

IAEA-TECDOC-1561

Economics of Nuclear Desalination: New Developments and Site Specific Studies


Final Results of a Coordinated Research Project 2002–2006

Harnessing Waste Heat for Nuclear Desalination

Waste heat: Heat extracted from NPP with no penalty to the power production

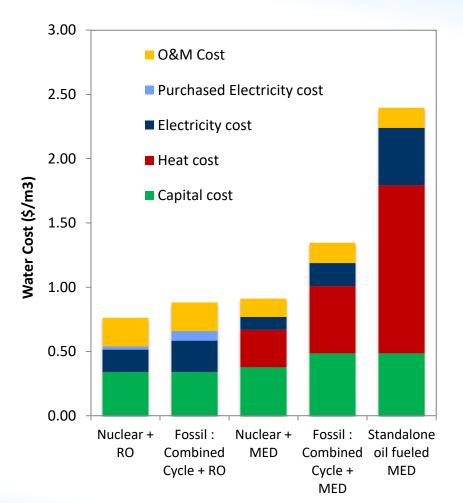
Nuclear Desalination?

- Improves overall efficiency
- Improve economics
- Can be used as Off-Peak Power

Harnessing Waste Heat PBMR for desalination

Using reject heat from the pre-cooler and intercooler of

PBMR = 220 MWth at 70 °C + MED desalination technology


Desalinated water 15,000 - 30,000 m3/day

Cover the needs of 55,000 - 600,000 people

Waste heat can also be recovered from PWR and CANDU type reactors to preheat RO seawater desalination

Cost of Nuclear Desalination

WNA (2010), The Economics of Nuclear Power

EIA (2010), Annual Energy Outlook 2011

Du and Parsons, (2009), Update on the cost of Nuclear Power, EIA, Annual Energy Outlook MIT, (2009), Update of the MIT 2003 Future of Nuclear Power Study

Economic Modelling Working Group (EMWG) of the GIF (2007), Cost Estimating Guidelines for Generation IV nuclear energy systems Rev 4.2

Global Water Intelligence (2010), Desalination Markets 2010 : Global Forecasts and analysis Global Water Intelligence (2011), IDA Desalination Plant Inventory

It is important to incorporate enviroeconomics when evaluating water and energy options → a combination of environmental and economic objectives

	Capital Costs (\$/kWe)	Fixed O&M (\$/kW)	Variable O&M (\$/MWh)	Fuel (\$/MWh)
Nuclear	4500	70	4	8
Coal	2400	40	7	40
СССТ	850	15	5	80
Wind	2000	30	0	0
PV	4000	25	0	0

Cost assumptions:

optimal coupling between NPP and DP Lifetime: 20 yrs Discount rate : 6%

Electricity needs

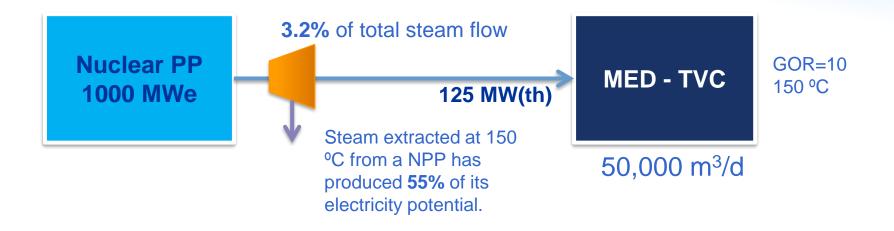
SWRO : 5 kWh/m³ MSF : 3.0 kWh/m³ MED : 1.25 kWh/m³

Improvement of economics using Cogeneration 10% of 1000 MWe PWR for desalination

To produce 130 000 m³/day of desalinated water using 1000 MWe PWR Total revenue (Cogeneration 90% electricity +10% water):

	Standalone	MED	RO
Electricity	7166 M\$	6771 M\$	7062 M\$
Water	0	888 M\$	672 M\$
Total	7166 M\$	7660 M\$	7700 M\$
		+7%	+7.5%

Using MED:


- Easier maintenance & pretreatment
- Industrial quality water

Using RO :

- Increased availability
- No lost power as in MED
- Using waste heat to preheat feed water by 15°C increases water production by ~13%

Water cost of small desalination plants



3.2% x 45%= 1.4% more steam needed in order to compensate the power lost

- The energy costs of nuclear desalination ~15% of total electricity costs
- Virtual free water

Safety Aspects

IAEA-TECDOC-1444

AEA-IELUUL-ILOO

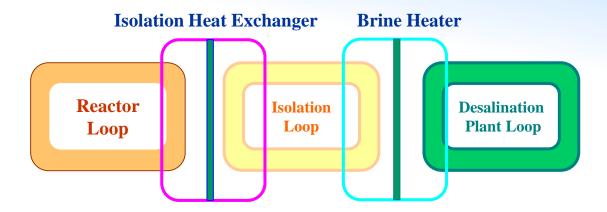
Safety aspects of nuclear plants

TAEA

coupled with seawater

desalination units

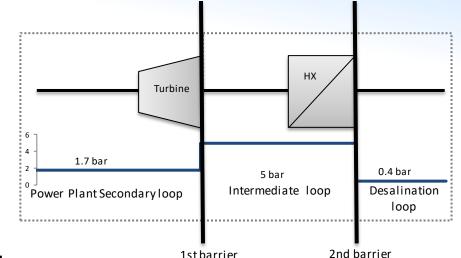
Safety issues of ND are similar to NPP


Safety: mainly dependent of nuclear plant, the design of coupling technology, and transient interactions between the two plants.

Additional **specific safety considerations** for the coupling schemes between the reactor and the desalination plant (DP):

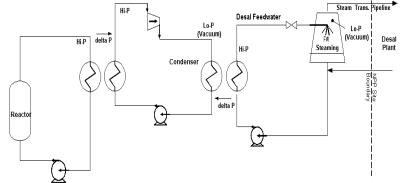
Issues related to environment, shared resources, and siting...etc.

Coupling


Coupling dictates **specific safety considerations**:

- Prevent the transfer of radioactive materials from NPP to Desalination plant.
- Minimize the impact of thermal desalination system on the nuclear reactor
- Protect the public and environment against radiation hazards that may be released from the Desalination plant system.
- Specific requirements as dictated by the National Regulatory Body.
- Backup heat or power source (NPP in refuelling).

Safe coupling


- 3 physical safety barriers with the use of an intermediate heat exchanger loop
- Pressure Reversal
- Online and batch monitoring of water radiation levels
- Experience has showed that radiation levels are orders of magnitudes below WHO specifications

Coupling between NP and DP: Specific Safety Considerations

In case of coupling through the condenser, additional non-safety grade barriers are established (the main condenser tubes).

In normal operation: main condenser at lower pressure than its surroundings (dynamic barrier) \rightarrow No leakage

Radioactive releases to potable water can be prevented by design and operational provisions

IN CASE OF ACCIDENT CONDITIONS AT THE NP

ND is to be shut down → Prevent potential contamination

Water produced by ND can be stored and monitored for radiological contamination before distribution

Coupling between NP and DP: general considerations

- Selection of proper technology
- Required product quality & amount: power-to-water ratio
- Specific national requirements
- Site selection
- In-depth feasibility studies

Coupling between NP and DP: technical considerations

Power vs. heating reactor

Parallel vs. series cogeneration

- Parallel cogen: part of steam to NP and part to DP
- Series cogen: expanded steam from NP turbine continues to DP

At least 2 mechanical barriers between primary coolant and brine

- $DP \rightarrow$ backup heat source if NP is down
- NP→ backup steam condenser if DP is down

Additional considerations

Seawater Intake Open intakes or sea wells Concentrate disposal temperature, salinity, chemicals "Hybrid" systems Combination of several desalination technologies RO plus pure distillation water

Environmental Impact

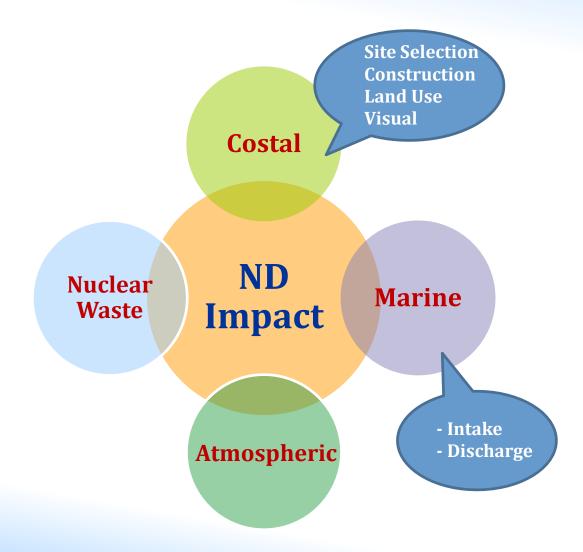
IAEA-TECDOC-1642

Environmental Impact Assessment of Nuclear Desalination

Site Selection Coastal Impact Marine impacts Atmospheric Impacts

Environmental Consideration

For *Nuclear Desalination:*


- Environmental issues related to desalination are a major factor in the design and implementation of desalination technologies.
- For DP, major environmental issues are related to the disposal and management of the concentrate.

Typically a desalination plant concentrate consists of the following components or groups of components, respectively :

- high salinity (depends on the recovery rate);
- heat (in thermal desalination);
- Anti-scaling additives (poly-carbonic acids, polyphosphates);
- antifoaming additives;
- antifouling additives (mainly chlorine and hypochlorite);
- halogenated organic compounds formed after chlorine addition;
- acid;
- corrosion products (metals).

Environmental Aspects for Nuclear Desalination

Site Selection

First step in planning a desalination plant is the selection of site, <u>Among many factors affecting siting</u>: Available energy, costs, transport of product water, discharge of brine, but also: the environmental impact of construction and operation of desalination plant.

Co-location with nuclear power offers partial mitigation of desalination's impacts on the marine and coastal environment, increased economic competitiveness, and offers waste heat from the power plant as an energy source for the desalination process, thus reducing its global warming impact.

Co-location involves additional issues: e.g. high salinity and the chemical composition of the brine discharge.

Coastal Impact

Construction Impact

Smaller specific use of materials (tons/MW) + Smaller construction area, Yet, Potential for longer construction period.

Land Use

Example: Nuclear Desalination facilities of 100 000 m³/day would require 0.2 km² 12 to 510 MW of installed power – requiring co-located power generation

Method	Land use (km²) for 1 GWe power plant	
Solar (photovoltaic)	20 – 50	
Wind	50 – 150	
Biomass (+ bio-alcohol/oil)	4000 - 6000	
Nuclear	1 - 4	
Source: IAEA; WEC, 2007		

Marine impacts

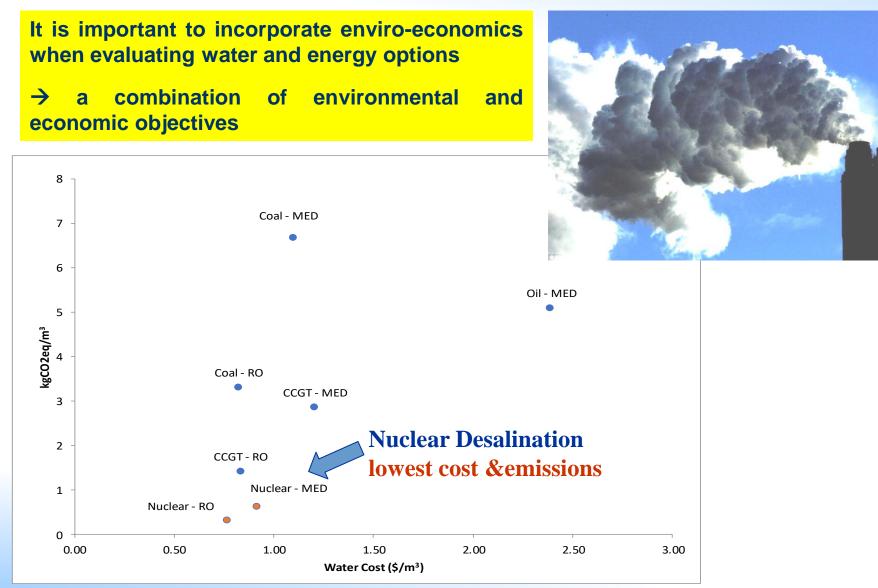
Desalination impacts the marine environment through two major operation phases: seawater intake and effluent discharge.

Possible environmental impacts of discharge

Elevated temperature and salinity are aggravating marine life

- Increased mortality or incapacitation of marine organisms
- Habitat deterioration or undesirable changes in species composition

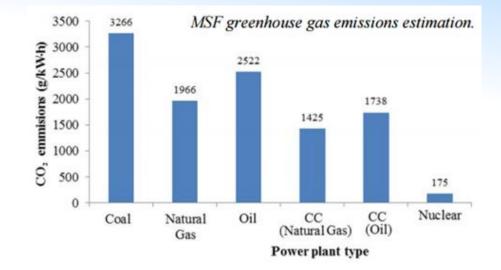
Strategies for Mitigation

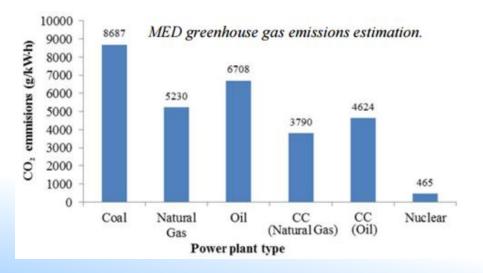

Commercial use of the discharged brine

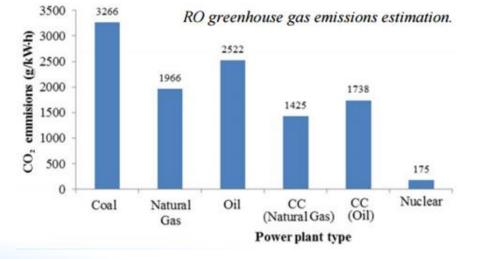
Dilution with multi-port diffusers in biologically insensitive areas...

...and environmentally sound intakes!

Atmospheric Impacts






Source: Analysis based on Primary Cost data from MIT (2009), EIA (2010), and GWI (2010)

GHG Emissions of *Nuclear Desalination*:

Questions & Discussion!

Thank you!