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Pros / Cons

»They are generally least destructive and are suitable for use with delicate materials.
»They are to a certain extent multielementary and produce high-accuracy quantitative
results.

» They require little or no preparation of the sample with the result that a specimen (like
an artifact) could be directly analyzed.

» Only very small quantities (mg) of sample are needed.

»They permit the analysis of a very small portion of the sample by reducing the
diameter of the ion beam to less than 0.5 mm.

»Some damage cannot be avoided (thermal, carbon buildup etc.)!

» A VdG type of accelerator is required.

»In most of the cases the experiments are carried out in vacuum chambers.

»Several experimental issues need to be addressed, thus a minimum knowledge of
nuclear physics (experimental and theoretical) is mandatory.

» No direct information about the chemical environment can be produced.

»The analysis concerns only a few microns below the surface of the samples.

»In most of the cases, a combination of techniques is required to solve a problem, and
this implies time consuming experiments!

A. Lagoyannis
Institute of Nuclear and Particle Physics
NCSR “Demokritos”




lon Beam Analysis

lon Beam Analysis (IBA) is based on the interaction, at both the atomic and the
nuclear level, between accelerated charged particles and the bombarded material.
When a charged particle moving at high speed strikes a material, it interacts with the
electrons and nuclei of the material atoms, slows down and possibly deviates from its
initial trajectory. This can lead to the emission of particles or radiation whose energy
is characteristic of the elements which constitute the sample material
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Theoretical Background |

Nuclear Reaction:

The interaction between two nuclei which results

in the emission of nuclei and/or gamma rays.

Cross Section:

The probability of a nuclear reaction to occur
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Theoretical Background |l

Scattering:

When a charged particle impinges on a material, it interacts with the electrons
and the nuclei of the material. The result of the interaction is the loss of energy
and the change of trajectory of the initial ion.
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Theoretical Background |l
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Depth Profiling

eRutherford Backscattering Spectroscopy (RBS)
*Nuclear Backscattering Spectroscopy (NBS)

YES
eElastic Recoil Detection Analysis (ERDA)
eNuclear Reaction Analysis (NRA)
*Particle Induced y —Ray Emission (PIGE)
eCharged Particle Activation Analysis (CPAA)
NO eParticle Induced X-Ray Emission (PIXE)

eNeutron Activation Analysis (NAA)
eSecondary lon Mass Spectroscopy (SIMS)
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Sample Size Selection

There are three possibilities

Under Vacuum External Beam
Small samples (1 to 10 cm) No size limitation
Can withstand vacuum (no wood) No vacuum conditions
Preferably good electrical conductivity Flow of He
Greater accuracy Limited accuracy
Microbem

Small samples (less than 1 cm)
Elemental mapping possibilities
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External Beam Setup
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Particle Induced Gamma ray Emission

Detection of the gamma rays from the produced nuclei.
They are characteristic of the produced nuclei thus of the initial one

capture

i

In most cases it is combined with PIXE
for the detection of light elements
e.X. Sodium (440 keV)

Boron (2125 keV)

Berillium

Fluorine (197 keV)
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Particle Induced Gamma ray Emission

Golden glazes analysis by PIGE and PIXE techniques
M. Fonseca et al. NIMB 269 (2011) 3060
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Particle Induced Gamma ray Emission

Analysis of Indian pigment gallstones
T.R. Rautray et al. NIMB 255 (2007) 409
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Fig. 2. PIXE spectrum of a south indian pigment gallstone.
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Particle Induced Gamma ray Emission

Advantages of scanning-mode ion beam analysis for the study
of Cultural Heritage N. Grassi et al. NIMB 256 (2007) 712-718
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Particle Induced Gamma ray Emission

140
(a) restored area i=25pA;t=700s

|dentification of lapis-lazuli pigments in paint 120 1

by PIGE measurements
N. Grassi et al. NIMB 219-220 (2004) 48
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Fig. 5. PIGE spectra obtained irradiating two blue areas in the
“*Madonna dei fusi™: (a) a restored area; (b) an original area;
here, the presence of lapis-lazuli in the paint layer is pointed out
by the 441 keV y-ray peak.
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Detection Apparatus

Beams used

* Protons from 0.5 to 3 MeV Probe larger depths

* Heavierions (12C, 160) 10 to 20 MeV Probe only surface layers
Higher mass resolution
Higher depth resolution

Most commonly used detectors are Surface Barrier Detectors (SSB)

* Various thicknesses (um) and apertures (mm?)

* They work only under high vacuum

* Can detect the energy of the particle (resolution ~ 15 keV)
* Can’t detect the mass of the particle

Sample considerations

* Small size ( few cm)
e Capable of being under vacuum (no wood e.t.c.)
* Preferable good electrical conductivity
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Experimental Setup

Motor driven goniometer

Great angular accuracy (0.01 deg.)
Up to 4 targets

Water cooling available

Motor driven goniometer
Suitable for channeling studies
4 — axis target movement
Place for PIGE detector
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Nuclear Reaction Analysis

Use of nuclear reactions, (d,p), (d,a), (p,a), (a,p) etc.

Usually with high enough Q-values

e.g. The ‘carbon problem’: RBS is weak, EBS can be applied only in certain cases (no
other light elements present, no high-Z matrix, very case-specific measurements):
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Examples

Analysis of Mexican obsidians by IBA techniques
G. Murillo et al. NIMB B 136-1 38 ( 1998) 888
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Examples

RBS and NRA with external beams for archaeometric applications
E. loannidou al. NIMB B 161+163 (2000) 730+736

Examination of patina layers on ancient steel
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Resonant PIGE

Reactions between particle and y - rays
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Resonant PIGE

Example: Resonance 2’Al(p,y)*®*Si  E =992 keV
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Resonant PIGE

Non-destructive evaluation of glass corrosion states
M. Mader et al. NIMB 136 138 (1998) 863-868
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Fig. 4. Hydrogen depth profiles from M3 glasses treated in 0.1
n HC! for different times: 1.5, 10, 20. and 40 h. The

fH{]'f’N. uTJ”C reaction was used around the 6 38 MeV reso-
nance.
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Resonant PIGE

PROS
v’ Ideal for depth profiling of hydrogen, fluorine and aluminum (EOA~1-10 ppm)

v’ Satisfactory results for carbon, nitrogen, oxygen, magnesium and silicon

v'Quantification is made with the use of standards

CONS

<HPGe are expensive, fragile and they need cooling

< Time consuming measurements

< Suitable for only one element

< If the sample is thick, there is the possibility of resonance overlapping

< Prior knowledge of detector’s efficiency is obligatory
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Destructiveness

. top view rear view

Fig. 3. Front and rear view of the model paint layer irradiated with various values of low fluences from 2.5 o 40 pCjcm?, as in referred in Table 2. Damage starts to appears at
2.5 uC/em’®, and is more marked on the rear view through the glass slide, where the end of the range can be observed.
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Destructiveness

l 500 x 50 pm
beam ”

non-irradiated area iradiated area 80 pClcm?®

100 ym
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Synopsis

Main Applications

Material Science

Archaeometry and
Cultural Heritage

Earth and
Environmental Sciences

Relevant Techniques Detection Capability
Rutherford
Backscattering Z>1
Spectrometry (RBS)
Elastic Recoil Detection Z2=<17

Biological Sciences

MNuclear Safety and
Radioprotection

IBA

(ERD) (typically including H)
Particle Induced X-ray 7511
Emission (PIXE)
Ga?nzt:];;’ng;ﬁ:inn (Ui, B Frdza{1h: Al, Si)
(PIGE) B LT (RN

Fundamental Nuclear
and Atomic Physics

Forensic

Muclear Reaction
Analysis (NRA)

Z<17
(often for C, N, O and
isotope detection)

Scanning Transmission
lon Microscopy (STIM)

Sample density

lonoluminescence (IL)

Defects and Eample
Structure
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Conclusions

Summary

1. Rutherford backscattering (RBS) is ideal for depth-profiling heavy elements on
lighter substrates.

2. Elastic recoil detection analysis (ERDA) is excellent for depth-profiling very light
elements in thin films.

3. Nuclear reaction analysis (NRA), is excellent for high resolution depth-profiling of
specific isotopes.

Present Situation
1. Alot of work is being done in PIGE and NRA.
2. Micro-beams and measurements in air (Louvre) have enhanced IBA capabilities.

Future Perspectives

1. New techniques are always evolving (e.g. HR-RBS).
2. PIGE analytical algorithms?
3. CAN WE SOLVE ALL THE PROBLEMS??? NO (BUT MANY YES...)
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